Planet Earth

objects, nasa

857 media by topicpage 1 of 9
CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at NASA's Kennedy Space Center in Florida, members of space shuttle Endeavour's STS-130 crew put on their launch-and-entry suits before heading to the Astrovan for the ride to Launch Pad 39A. The crew is participating in a dress rehearsal for their upcoming launch, known as the Terminal Countdown Demonstration Test.  Making his second spaceflight on STS-130 is Mission Specialist Robert Behnken, seen here.    The primary payload for the STS-130 mission is the International Space Station's Tranquility node, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top.  The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency.  Launch of STS-130 is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html.  Photo credit: NASA/Kim Shiflett KSC-2010-1354

CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at NASA...

CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at NASA's Kennedy Space Center in Florida, members of space shuttle Endeavour's STS-130 crew put on their launch-and-entry suits before heading to ... More

CAPE CANAVERAL, Fla. –   Technicians in the Payload Hazardous Servicing Facility remove the protective cover from the Wide Field Camera 3, or WFC3.  The WFC3 is part of the payload on space shuttle Atlantis for the fifth and final Hubble servicing mission, STS-125.  As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8.  Photo credit: NASA/Jack Pfaller KSC-08pd2450

CAPE CANAVERAL, Fla. – Technicians in the Payload Hazardous Servicin...

CAPE CANAVERAL, Fla. – Technicians in the Payload Hazardous Servicing Facility remove the protective cover from the Wide Field Camera 3, or WFC3. The WFC3 is part of the payload on space shuttle Atlantis for... More

CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, and its crew are preparing to recover the left spent booster from the Atlantic Ocean. The round objects on deck are large pumping machines that will be attached to the booster by a hose that will blow out debris and water and then pump in air so the booster can float horizontally on the water's surface for towing back to Port Canaveral in Florida.            The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky KSC-2011-1836

CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket boost...

CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, and its crew are preparing to recover the left spent booster from the Atlantic Ocean. The round objects on deck are larg... More

CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at NASA's Kennedy Space Center in Florida, members of space shuttle Endeavour's STS-130 crew put on their launch-and-entry suits before heading to the Astrovan for the ride to Launch Pad 39A. The crew is participating in a dress rehearsal for their upcoming launch, known as the Terminal Countdown Demonstration Test.  Making his second spaceflight on STS-130 is Mission Specialist Nicholas Patrick, seen here in his helmet.    The primary payload for the STS-130 mission is the International Space Station's Tranquility node, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top.  The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency.  Launch of STS-130 is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html.  Photo credit: NASA/Kim Shiflett KSC-2010-1358

CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at NASA...

CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at NASA's Kennedy Space Center in Florida, members of space shuttle Endeavour's STS-130 crew put on their launch-and-entry suits before heading to ... More

CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at NASA's Kennedy Space Center in Florida, members of space shuttle Endeavour's STS-130 crew put on their launch-and-entry suits before heading to the Astrovan for the ride to Launch Pad 39A. The crew is participating in a dress rehearsal for their upcoming launch, known as the Terminal Countdown Demonstration Test.  Making his first spaceflight on STS-130 is Pilot Terry Virts, seen here in his helmet.    The primary payload for the STS-130 mission is the International Space Station's Tranquility node, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top.  The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency.  Launch of STS-130 is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html.  Photo credit: NASA/Kim Shiflett KSC-2010-1363

CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at NASA...

CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at NASA's Kennedy Space Center in Florida, members of space shuttle Endeavour's STS-130 crew put on their launch-and-entry suits before heading to ... More

CAPE CANAVERAL, Fla. –  After rotation of the Wide Field Camera 3 (background left), or WFC3, in the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians check the data.  The WFC3 will be transferred to the Super Lightweight Interchangeable Carrier.  WFC3 is part of the payload on space shuttle Atlantis' STS-125 mission for the fifth and final Hubble servicing flight to NASA's Hubble Space Telescope. The curved edge shown at top is the radiator, the "outside" of WFC3 that will be exposed to space and will expel heat out of Hubble and into space through black body radiation.  As Hubble enters the last stage of its life, WFC3 will be Hubble's next evolutionary step, allowing Hubble to peer ever further into the mysteries of the cosmos. WFC3 will study a diverse range of objects and phenomena, from young and extremely distant galaxies, to much more nearby stellar systems, to objects within our very own solar system. WFC3 will take the place of Wide Field Planetary Camera 2, which astronauts will bring back to Earth aboard the shuttle. Launch of Atlantis is targeted at 1:34 a.m. EDT Oct. 8.  Photo credit: NASA/Amanda Diller KSC-08pd2467

CAPE CANAVERAL, Fla. – After rotation of the Wide Field Camera 3 (bac...

CAPE CANAVERAL, Fla. – After rotation of the Wide Field Camera 3 (background left), or WFC3, in the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, technicians check the data. The WFC3 wi... More

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, at left, head of International Space Station, Program Department, European Space Agency, and Michael Suffredini, program manager, International Space Station, NASA, sign documents transferring the ownership of node 3 for the International Space Station from the European Space Agency, or ESA, to NASA.    Node 3 is named "Tranquility" after the Sea of Tranquility, the lunar landing site of Apollo 11.  The payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the International Space Station's life support systems. The module was built for ESA by Thales Alenia Space in Turin, Italy. Attached to one end of Tranquility is a cupola, a unique work station with six windows on its sides and one on top.  The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. Just under 10 feet in diameter, the module will accommodate two crew members and portable workstations that can control station and robotic activities. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. Space shuttle Endeavour's STS-130 mission is targeted to launch Feb. 4, 2010. Photo credit: NASA/Kim Shiflett KSC-2009-6511

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NAS...

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, Bernardo Patti, at left, head of International Space Station, Program Department, European Space Agency... More

The Apollo 16 Command Module splashed down in the Pacific Ocean on April 27, 1972 after an 11-day moon exploration mission. The 3-man crew is shown here aboard the rescue ship, USS Horton. From left to right are: Mission Commander John W. Young, Lunar Module pilot Charles M. Duke, and Command Module pilot Thomas K. Mattingly II. The sixth manned lunar landing mission, the Apollo 16 (SA-511) lifted off on April 16, 1972. The Apollo 16 mission continued the broad-scale geological, geochemical, and geophysical mapping of the Moon’s crust, begun by the Apollo 15, from lunar orbit. This mission marked the first use of the Moon as an astronomical observatory by using the ultraviolet camera/spectrograph which photographed ultraviolet light emitted by Earth and other celestial objects. The Lunar Roving Vehicle, developed by the Marshall Space Flight Center, was also used. n/a

The Apollo 16 Command Module splashed down in the Pacific Ocean on Apr...

The Apollo 16 Command Module splashed down in the Pacific Ocean on April 27, 1972 after an 11-day moon exploration mission. The 3-man crew is shown here aboard the rescue ship, USS Horton. From left to right ar... More

CAPE CANAVERAL, Fla. --  In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the MAXI (Monitor of All-sky X-ray Image) is moved toward the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES, where it will be installed. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann KSC-2009-1069

CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at N...

CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the MAXI (Monitor of All-sky X-ray Image) is moved toward the Japanese Experiment Module's Experiment... More

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the payload transportation canister containing the International Space Station's Node 3, named Tranquility, is lowered onto a transporter for its move to Launch Pad 39A.    The primary payload for space shuttle Endeavour's STS-130 mission, Tranquility is a pressurized module that will provide room for many of the space station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top.  The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency.  Launch of STS-130 is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html.  Photo credit: NASA/Dimitri Gerondidakis KSC-2010-1240

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NAS...

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the payload transportation canister containing the International Space Station's Node 3, named Tranquil... More

CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the MAXI (Monitor of All-sky X-ray Image) before it is installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann KSC-2009-1067

CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NA...

CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the MAXI (Monitor of All-sky X-ray Image) before it is installed on the Japanese Experim... More

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a payload technician dressed in clean room attire, known as a bunny suit, secures the hatch on the International Space Station's Node 3, named Tranquility.    Hatch closure follows the completion of preparations for the node's transport to the pad and is a significant milestone in launch processing activities. The primary payload for the STS-130 mission, Tranquility is a pressurized module that will provide room for many of the space station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top.  The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency.  Space shuttle Endeavour's STS-130 mission is targeted for launch in early February 2010. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html.  Photo credit: NASA/Amanda Diller KSC-2009-6840

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NAS...

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a payload technician dressed in clean room attire, known as a bunny suit, secures the hatch on the Inte... More

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, preparations are under way to move space shuttle Endeavour, attached to its external tank and solid rocket boosters, from High Bay 1 to Launch Pad 39A. First motion was at 4:13 a.m. EST Jan. 6. The 3.4-mile trip, known as rollout, takes about six hours.    Rollout is a significant milestone in launch processing activities. The primary payload for the STS-130 mission is the International Space Station's Node 3, Tranquility, a pressurized module that will provide room for many of the station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top.  The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency.  Space shuttle Endeavour's STS-130 mission is targeted for launch at 4:39 a.m. EST Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html.  Photo credit: NASA/Amanda Diller KSC-2010-1025

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kenn...

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, preparations are under way to move space shuttle Endeavour, attached to its external tank and solid rocket boos... More

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the flatbed truck  with the SV-1 cargo of the STSS Demonstrator spacecraft begins moving to the Astrotech payload processing facility in Titusville, Fla.  The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer.  Photo credit: NASA/Kim Shiflett  (Approved for Public Release 09-MDA-4804 [4 Aug 09] ) KSC-2009-4615

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing ...

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the flatbed truck with the SV-1 cargo of the STSS Demonstrator spacecraft begins moving to the Astrotech payload processing facil... More

Skylab, NASA Mercury project. NASA Skylab space station

Skylab, NASA Mercury project. NASA Skylab space station

This chart describes the Skylab student experiment Objects Within Mercury's Orbit, proposed by Daniel C. Bochsler of Silverton, Oregon. This experiment utilized Skylab's White Light Coronagraph telescope to ide... More

EXECUTIVE RETIREMENT PRESENTATION OBJECTS, NASA Technology Images

EXECUTIVE RETIREMENT PRESENTATION OBJECTS, NASA Technology Images

The original finding aid described this as: Capture Date: 2/20/1975 Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

EXECUTIVE RETIREMENT PRESENTATION OBJECTS, NASA Technology Images

EXECUTIVE RETIREMENT PRESENTATION OBJECTS, NASA Technology Images

The original finding aid described this as: Capture Date: 2/20/1975 Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

TEST OBJECTS BORON - EPOXY TUBE - GRAPHITE - EPOXY COUPON

TEST OBJECTS BORON - EPOXY TUBE - GRAPHITE - EPOXY COUPON

The original finding aid described this as: Capture Date: 8/4/1975 Photographer: MARTIN BROWN Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

EXECUTIVE RETIREMENT PRESENTATION OBJECTS, NASA Technology Images

EXECUTIVE RETIREMENT PRESENTATION OBJECTS, NASA Technology Images

The original finding aid described this as: Capture Date: 2/20/1975 Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

EXECUTIVE RETIREMENT PRESENTATION OBJECTS, NASA Technology Images

EXECUTIVE RETIREMENT PRESENTATION OBJECTS, NASA Technology Images

The original finding aid described this as: Capture Date: 2/20/1975 Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

TEST OBJECTS BORON - EPOXY TUBE - GRAPHITE - EPOXY COUPON

TEST OBJECTS BORON - EPOXY TUBE - GRAPHITE - EPOXY COUPON

The original finding aid described this as: Capture Date: 8/4/1975 Photographer: MARTIN BROWN Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

A Marshall scientist practices transferring objects in the Neutral Buoyancy Simulator (NBS) for the Spacelab transfer tunnel test. n/a

A Marshall scientist practices transferring objects in the Neutral Buo...

A Marshall scientist practices transferring objects in the Neutral Buoyancy Simulator (NBS) for the Spacelab transfer tunnel test.

Range :  top- 86,000  miles  bottom- 192,000 mi. These two close-ups of Ganymede, the largest of Jupiter's 13 moons, show different views of the largest block of dark, heavily cratered terrain. The bottom image shows objects 3 or 4 miles across, with resolution of about 1.5 miles.  The light, linear stripes recurring across the dark region resemble the outer rings of  the large ring structure around Callisto. If these features are related to an ancient ring structure formed by a large impact, their small curvature suggests that the original structure was even larger than one seen on Callisto. There is no apparent trace now of the center of this suggested structure, which must have been destroyed by the resurfacing evident over most of Ganymede in the grooved terrain. Another interpretation is that these features are not impact-related rings, but rather internally produced fractures crossing the dark terrain, similiar to the grooved bands. ARC-1979-A79-7107

Range : top- 86,000 miles bottom- 192,000 mi. These two close-ups o...

Range : top- 86,000 miles bottom- 192,000 mi. These two close-ups of Ganymede, the largest of Jupiter's 13 moons, show different views of the largest block of dark, heavily cratered terrain. The bottom image... More

History of Hubble Space Telescope (HST)

History of Hubble Space Telescope (HST)

This drawing illustrates the Hubble Space Telescope's (HST's) High Speed Photometer (HSP). The HSP measures the intensity of starlight (brightness), which will help determine astronomical distances. Its princip... More

History of Hubble Space Telescope (HST)

History of Hubble Space Telescope (HST)

This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or throug... More

Range :  7.7 million km. ( 4.8 million miles ) P-29465 In this image captured by Voyager 2, three newly discovered satellites of Uranus can be seen orbiting outside of the nine known rings of Uranus. The outermost of the rings, the Epsilon Ring can be seen here at upper right. The largest of the three moons viewed here, 1986U1, was discovered January 3rd. it is an estimated 90 km. ( 55 mi. )  across and its orbits Uranus every 12 hours, 19 minutes ata distance of 66,090 km. ( 41,040 mi.) from the planets center. the other two moons are slightly smaller, 1986U3 orbits every 11 hours, 6 minutes at 61,750 km. ( 38,350 mi.),1986U4 every 13 hours, 24 minutes at 69,920 km.  ( 43,420 mi.). They were dicovered on January 9th and 13th, respectively. Long exposures were required to bring out these small objects. As a result of the relative motions of the spacecraft and the moons, they appear slightly elongated. ARC-1981-A86-7005

Range : 7.7 million km. ( 4.8 million miles ) P-29465 In this image c...

Range : 7.7 million km. ( 4.8 million miles ) P-29465 In this image captured by Voyager 2, three newly discovered satellites of Uranus can be seen orbiting outside of the nine known rings of Uranus. The outerm... More

Milky way - This image of the center of our galaxy was produced from observtons made by the Infrared Astronomical Satellite (IRAS). The infrared telescope carried by IRAS sees through the dust and gas that obscures stars and other objects when viewed by optical telescopes. The bulge in the band is the center of the galaxy. The knots and blobs scattered along the band are giant clouds of interstellar gas and dust heated by nearby stars. Some are wrmed by newly formed stars in the surrounding cloud and some are heated by nearby massive, hot, blue stars tens of thousands of times brighter than our Sun. ARC-1983-A83-0768-1

Milky way - This image of the center of our galaxy was produced from o...

Milky way - This image of the center of our galaxy was produced from observtons made by the Infrared Astronomical Satellite (IRAS). The infrared telescope carried by IRAS sees through the dust and gas that obsc... More

This artist's concept illustrates the ring of material discovered by the Infrared Astronomical Satellite around the star Vega. IRAS scientists believe the material probably consists of dust and small objects resembling meteors. As depicted here, the ring of particles is thin enough toallow light from distant stars to shine through. The plane of the Milky Way is to the right. ARC-1983-AC83-0768-4

This artist's concept illustrates the ring of material discovered by t...

This artist's concept illustrates the ring of material discovered by the Infrared Astronomical Satellite around the star Vega. IRAS scientists believe the material probably consists of dust and small objects re... More

History of Hubble Space Telescope (HST)

History of Hubble Space Telescope (HST)

This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror... More

Artist: Rick Guidice SIRTF Artwork update - cutaway  Space Infrared Telescope Facility's  will orbit at 900 kilometers aboard a platform-type spacecraft, providing power, pointing, and communications to Earth. The telescope and its infrared instruments, will reside within a cylindrical cryogen tank. The hollow walls of the tank will contain the superfluid helium that cools the telescope to its operating temperature, a few degrees above absolute zero.   SIRTF will carry three versatile instruments to analyze the radiation it collects, the Multiband Imaging Photometer, the Infrared Array Camera, and the Infrared Spectrograph. SIRTF long lifetime - 5 years or more - will permit astronomers of all disciplines to use the facililty to carry out a wide variety of astrophysical programs. It will provide ongoing coverage of variable objects, such as quasars, as well as the capability to study rare and transient events such as comets and supernovae. SIRTF's long lifetime will also allow it to distinguish nearby objects by detecting their gradual motions relative to the more distant background stars. ARC-1988-AC88-0595

Artist: Rick Guidice SIRTF Artwork update - cutaway Space Infrared Te...

Artist: Rick Guidice SIRTF Artwork update - cutaway Space Infrared Telescope Facility's will orbit at 900 kilometers aboard a platform-type spacecraft, providing power, pointing, and communications to Earth. ... More

Range :  4 million km (2.5 million miles) Already-intriquing patterns of unknown origin appear on the surgace of Neptune's largest satellite, Trition, in this image from Voyager 2.  Voyager images show that Trition's diameter is about 2,720 km (1,690 miles), and that it is one of the brightest objects in the solar system, reflecting about 70 percent of the sunlight that strikes it.  THis is the hemisphere of Triton that always faces away from Neptune.  The south pole is near the botton of the image.  Triton's rotation axis is tilted so that the latitude at the center of the disk is 55 degrees south.  Dark regions at the top of the disk extend from roughly the equator to beyond 20 degrees north.  The margin between the bright and dark regions varies with longitude around the satellite.  The gray, featureless area just to the right of the center of the disk is due to a reseau (reticule mark) in the camera. ARC-1989-A89-7012

Range : 4 million km (2.5 million miles) Already-intriquing patterns ...

Range : 4 million km (2.5 million miles) Already-intriquing patterns of unknown origin appear on the surgace of Neptune's largest satellite, Trition, in this image from Voyager 2. Voyager images show that Tri... More

P-34666 This false color photograph of Neptune was reconstructed from two images taken by Voyager 2's wide angle camera, through the orange and two different methane filters. Objects that deep in the atmosphere are blue, while those at higher altitudes are white. Light at methane wavelengths is mostly absorbed in the deeper atmosphere. The bright, white feature is a high altitude cloud just south of the Great dark Spot. The hard, sharp inner boundary within the bright cloud is an artifact of computer processing on Earth. Other, smaller clouds associated with the Great Dark Spot are white or pink, and are also at high altitudes. Neptune's limb looks reddish because Voyager 2 is viewing it tangentially, and the sunlight is scattered back to space before it can be absorbed by methane. A long, narrow band of high-altitude clouds near the top of the image is located at 25 degrees north latitude, and faint hazes mark the equator and polor regions ARC-1989-AC89-7019

P-34666 This false color photograph of Neptune was reconstructed from ...

P-34666 This false color photograph of Neptune was reconstructed from two images taken by Voyager 2's wide angle camera, through the orange and two different methane filters. Objects that deep in the atmosphere... More

Space Science, Space Shuttle Program, NASA

Space Science, Space Shuttle Program, NASA

In this photograph, Dr. Gerald Fishman of the Marshall Space Flight Center (MSFC), a principal investigator of the Compton Gamma-Ray Observatory's (GRO's) instrument, the Burst and Transient Source Experiment (... More

Space Shuttle Atlantis, Space Shuttle Projects

Space Shuttle Atlantis, Space Shuttle Projects

This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered t... More

This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program. n/a

This photograph shows the Compton Gamma-Ray Observatory (GRO) being de...

This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reenter... More

GREENBELT, Md. -- At NASA’s Goddard space Flight Center, Greenbelt, Md., a fully integrated Extreme Ultraviolet Explorer EUVE is seen in a clean room. EUVE will map the entire sky to determine the existence, direction, brightness and temperature of numerous objects that are sources of extreme ultraviolet radiation.  Goddard is responsible for the design, construction, integration, checkout and operation of the spacecraft which is scheduled to launch May 28, 1992 from Cape Canaveral Air Force Station, Fla., aboard a Delta II rocket. Photo Credit: NASA KSC-92PC-0371

GREENBELT, Md. -- At NASA’s Goddard space Flight Center, Greenbelt, Md...

GREENBELT, Md. -- At NASA’s Goddard space Flight Center, Greenbelt, Md., a fully integrated Extreme Ultraviolet Explorer EUVE is seen in a clean room. EUVE will map the entire sky to determine the existence, di... More

STS054-46-008 - STS-054 - Two crewmember EVA in the payload bay simulating movement of large objects.

STS054-46-008 - STS-054 - Two crewmember EVA in the payload bay simula...

The original finding aid described this as: Description: Two crewmember EVA in the payload bay simulating the movement of large objects by carrying one another. Good view of the Earth in the background below b... More

STS054-46-009 - STS-054 - Two crewmember EVA in the payload bay simulating movement of large objects.

STS054-46-009 - STS-054 - Two crewmember EVA in the payload bay simula...

The original finding aid described this as: Description: Two crewmember EVA in the payload bay simulating the movement of large objects by carrying one another. Good view of the Earth in the background below b... More

Cometary Knots Around A Dying Star

Cometary Knots Around A Dying Star

(August 1, 1994) These gigantic, tadpole-shaped objects are probably the result of a dying star's last gasps. Dubbed "cometary knots" because their glowing heads and gossamer tails resemble comets, the gaseous ... More

History of Chandra X-Ray Observatory

History of Chandra X-Ray Observatory

This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the C... More

Spacelab, Space Shuttle Program, NASA

Spacelab, Space Shuttle Program, NASA

ASTRO-2 was the second dedicated Spacelab mission to conduct astronomical observations in the ultraviolet spectral regions. It consisted of three unique instruments: the Hopkins Ultraviolet Telescope (HUT), the... More

History of Hubble Space Telescope (HST)

History of Hubble Space Telescope (HST)

This deepest-ever view of the universe unveils myriad galaxies back to the begirning of time. Several hundred, never-before-seen, galaxies are visible in this view of the universe, called Hubble Deep Field (HDF... More

Space Science, Space Shuttle Program, NASA

Space Science, Space Shuttle Program, NASA

In this photograph, Dr. Gerald Fishman of the Marshall Space Flight Center (MSFC), a principal investigator of the Compton Gamma-Ray Observatory's (GRO's) instrument, the Burst and Transient Source Experiment (... More

Space shuttle Early Program Development

Space shuttle Early Program Development

Engineers at one of MSFC's vacuum chambers begin testing a microthruster model. The purpose of these tests are to collect sufficient data that will enabe NASA to develop microthrusters that will move the Space ... More

History of Chandra X-Ray Observatory

History of Chandra X-Ray Observatory

This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-Ameri... More

History of Chandra X-Ray Observatory

History of Chandra X-Ray Observatory

This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO ... More

KENNEDY SPACE CENTER, FLA. -- The International Extreme Ultraviolet Hitchhiker (IEH-3), one of the payloads for the STS-95 mission, is moved to a payload canister in the Multi-Payload Processing Facility. The mission is scheduled for liftoff on Space Shuttle Discovery on Oct. 29. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar-observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process KSC-98pc1130

KENNEDY SPACE CENTER, FLA. -- The International Extreme Ultraviolet Hi...

KENNEDY SPACE CENTER, FLA. -- The International Extreme Ultraviolet Hitchhiker (IEH-3), one of the payloads for the STS-95 mission, is moved to a payload canister in the Multi-Payload Processing Facility. The m... More

KENNEDY SPACE CENTER, FLA. -- The International Extreme Ultraviolet Hitchhiker (IEH-3), one of the payloads for the STS-95 mission, is prepared for its move to a payload canister in the Multi-Payload Processing Facility. The mission is scheduled for liftoff on Space Shuttle Discovery on Oct. 29. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar-observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process KSC-98pc1134

KENNEDY SPACE CENTER, FLA. -- The International Extreme Ultraviolet Hi...

KENNEDY SPACE CENTER, FLA. -- The International Extreme Ultraviolet Hitchhiker (IEH-3), one of the payloads for the STS-95 mission, is prepared for its move to a payload canister in the Multi-Payload Processing... More

KENNEDY SPACE CENTER, FLA. -- The International Extreme Ultraviolet Hitchhiker (IEH-3), one of the payloads for the STS-95 mission, is suspended above its payload canister in the Multi-Payload Processing Facility. The mission is scheduled for liftoff on Space Shuttle Discovery on Oct. 29. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Other research payloads include the Hubble Space Telescope Orbital Systems Test Platform, the Spartan solar-observing deployable spacecraft, and the SPACEHAB single module with experiments on space flight and the aging process KSC-98pc1135

KENNEDY SPACE CENTER, FLA. -- The International Extreme Ultraviolet Hi...

KENNEDY SPACE CENTER, FLA. -- The International Extreme Ultraviolet Hitchhiker (IEH-3), one of the payloads for the STS-95 mission, is suspended above its payload canister in the Multi-Payload Processing Facili... More

The open doors of the payload bay on Space Shuttle Discovery await the transfer of four of the payloads on mission STS-95: the SPACEHAB single module, Spartan, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and the International Extreme Ultraviolet Hitchhiker (IEH-3). At the top of bay are the airlock (used for depressurization and repressurization during extravehicular activity and transfer to Mir) and the tunnel adapter (enables the flight crew members to transfer from the pressurized middeck crew compartment to Spacelab's pressurized shirt-sleeve environment). SPACEHAB involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Discovery is scheduled to launch on Oct. 29, 1998 KSC-98pc1186

The open doors of the payload bay on Space Shuttle Discovery await the...

The open doors of the payload bay on Space Shuttle Discovery await the transfer of four of the payloads on mission STS-95: the SPACEHAB single module, Spartan, the Hubble Space Telescope Orbiting Systems Test P... More

KENNEDY SPACE CENTER, FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits and tethers prepare to move the payloads for mission STS-95 through the open doors of the payload bay (right) of Space Shuttle Discovery. At the top of the RSS is the Spacehab module; below it are the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and International Extreme Ultraviolet Hitchhiker (IEH-3). The PCR is an environmentally controlled facility with seals around the mating surface that fit against the orbiter or payload canister and permit the payload bay or canister doors to be opened and cargo removed without exposing it to outside air and contaminants. Payloads are installed vertically in the orbiter using the extendable payload ground handling mechanism. Fixed and extendable work platforms provide work access in the PCR. The SPACEHAB single module involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Mission STS-95 is scheduled to launch Oct. 29, 1998 KSC-98pc1183

KENNEDY SPACE CENTER, FLA. -- Inside the Payload Changeout Room (PCR) ...

KENNEDY SPACE CENTER, FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits and tethers prepare to move the payloads for mission ... More

KENNEDY SPACE CENTER,FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits and tethers prepare to move the payloads for mission STS-95 through the open doors of the payload bay (left) of Space Shuttle Discovery. At the top of the RSS is the Spacehab module; below it are the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and the International Extreme Ultraviolet Hitchhiker (IEH-3). The PCR is an environmentally controlled facility with seals around the mating surface that fit against the orbiter or payload canister and permit the payload bay or canister doors to be opened and cargo removed without exposing it to outside air and contaminants. Payloads are installed vertically in the orbiter using the extendable payload ground handling mechanism. Fixed and extendable work platforms provide work access in the PCR. The SPACEHAB single module involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Mission STS-95 is scheduled to launch Oct. 29, 1998 KSC-98pc1184

KENNEDY SPACE CENTER,FLA. -- Inside the Payload Changeout Room (PCR) i...

KENNEDY SPACE CENTER,FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits and tethers prepare to move the payloads for mission S... More

KENNEDY SPACE CENTER, FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits move the payloads for mission STS-95 to the payload bay of Space Shuttle Discovery. At the top of the RSS is the Spacehab module; below it are the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbiting Systems Test Platform (HOST), and the International Extreme Ultraviolet Hitchhiker (IEH-3). The PCR is an environmentally controlled facility with seals around the mating surface that fit against the orbiter or payload canister and permit the payload bay or canister doors to be opened and cargo removed without exposing it to outside air and contaminants. Payloads are installed vertically in the orbiter using the extendable payload ground handling mechanism. Fixed and extendable work platforms provide work access in the PCR. The SPACEHAB single module involves experiments on space flight and the aging process. Spartan is a solar physics spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona. HOST carries four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an Earth-orbiting environment. IEH-3 comprises several experiments that will study the Jovian planetary system, hot stars, planetary and reflection nebulae, other stellar objects and their environments through remote observation of EUV/FUV emissions; study spacecraft interactions, Shuttle glow, thruster firings, and contamination; and measure the solar constant and identify variations in the value during a solar cycle. Mission STS-95 is scheduled to launch Oct. 29, 1998 KSC-98pc1185

KENNEDY SPACE CENTER, FLA. -- Inside the Payload Changeout Room (PCR) ...

KENNEDY SPACE CENTER, FLA. -- Inside the Payload Changeout Room (PCR) in the Rotating Service Structure (RSS) at Launch Pad 39-B, technicians in clean suits move the payloads for mission STS-95 to the payload b... More

In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT) for mission STS-93, Mission Specialist Steven A. Hawley checks out equipment in the orbiter Columbia. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The STS-93 mission will deploy the Advanced X-ray Astrophysics Facility (AXAF), which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). AXAF will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. The other STS-93 crew members are Mission Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, Mission Specialist Catherine G. Coleman and Mission Specialist Michel Tognini of France. Targeted date for the launch of STS-93 is March 18, 1999 KSC-98pc1691

In the Orbiter Processing Facility Bay 3, during the Crew Equipment In...

In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT) for mission STS-93, Mission Specialist Steven A. Hawley checks out equipment in the orbiter Columbia. The CEIT provides ... More

During the Crew Equipment Interface Test (CEIT) for mission STS-93, Mission Commander Eileen M. Collins checks out the flight deck on the orbiter Columbia, in the Orbiter Processing Facility Bay 3. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The STS-93 mission will deploy the Advanced X-ray Astrophysics Facility (AXAF) which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). AXAF will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. Collins is the first woman to serve as a shuttle mission commander. The other STS-93 crew members are Mission Specialist Catherine G. Coleman, Pilot Jeffrey S. Ashby, Mission Specialist Steven A. Hawley and Mission Specialist Michel Tognini of France. Targeted date for the launch of STS-93 is March 18, 1999 KSC-98pc1688

During the Crew Equipment Interface Test (CEIT) for mission STS-93, Mi...

During the Crew Equipment Interface Test (CEIT) for mission STS-93, Mission Commander Eileen M. Collins checks out the flight deck on the orbiter Columbia, in the Orbiter Processing Facility Bay 3. The CEIT pro... More

In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT), Mission Specialist Catherine G. Coleman checks equipment that will fly on mission STS-93. The STS-93 mission will deploy the Advanced X-ray Astrophysics Facility (AXAF) which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). AXAF will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. The other STS-93 crew members are Mission Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, Mission Specialist Steven A. Hawley and Mission Specialist Michel Tognini of France. Targeted date for the launch of STS-93 is March 18, 1999 KSC-98pc1690

In the Orbiter Processing Facility Bay 3, during the Crew Equipment In...

In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT), Mission Specialist Catherine G. Coleman checks equipment that will fly on mission STS-93. The STS-93 mission will deplo... More

In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT) for mission STS-93, crew members pose for a photograph . From left they are Mission Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialist Michel Tognini of France. Above Ashby's head is Mission Specialist Catherine G. Coleman. Not shown is Mission Specialist Steven A. Hawley. Collins is the first woman to serve as a mission commander on a shuttle flight. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The STS-93 mission will deploy the Advanced X-ray Astrophysics Facility (AXAF), which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). AXAF will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. Targeted date for the launch of STS-93 is March 18, 1999 KSC-98pc1692

In the Orbiter Processing Facility Bay 3, during the Crew Equipment In...

In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT) for mission STS-93, crew members pose for a photograph . From left they are Mission Commander Eileen M. Collins, Pilot J... More

In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT) for mission STS-93, Mission Commander Eileen M. Collins checks out her seat in the orbiter Columbia. Collins is the first woman to serve as a mission commander on a shuttle flight. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The STS-93 mission will deploy the Advanced X-ray Astrophysics Facility (AXAF), which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). AXAF will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. The other STS-93 crew members are Pilot Jeffrey S. Ashby, Mission Specialist Catherine G. Coleman, Mission Specialist Steven A. Hawley and Mission Specialist Michel Tognini of France. Targeted date for the launch of STS-93 is March 18, 1999 KSC-98pc1689

In the Orbiter Processing Facility Bay 3, during the Crew Equipment In...

In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT) for mission STS-93, Mission Commander Eileen M. Collins checks out her seat in the orbiter Columbia. Collins is the firs... More

In the Orbiter Processing Facility Bay 3, aboard the orbiter Columbia, STS-93 Mission Commander Eileen M. Collins listens to Mission Specialist Steven A. Hawley during the Crew Equipment Interface Test (CEIT). Collins is the first woman to serve as a mission commander on a shuttle flight. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The rest of the crew members are Pilot Jeffrey S. Ashby, Mission Specialist Catherine G. Coleman, and Mission Specialist Michel Tognini of France. The STS-93 mission will deploy the Advanced X-ray Astrophysics Facility (AXAF), which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). AXAF will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. Targeted date for the launch of STS-93 is March 18, 1999 KSC-98pc1693

In the Orbiter Processing Facility Bay 3, aboard the orbiter Columbia,...

In the Orbiter Processing Facility Bay 3, aboard the orbiter Columbia, STS-93 Mission Commander Eileen M. Collins listens to Mission Specialist Steven A. Hawley during the Crew Equipment Interface Test (CEIT). ... More

In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT), Mission Specialist Catherine G. Coleman (left) and Mission Commander Eileen M. Collins (right) check equipment that will fly on mission STS-93. The STS-93 mission will deploy the Advanced X-ray Astrophysics Facility (AXAF) which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). AXAF will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. Collins is the first woman to serve as a shuttle mission commander. The other STS-93 crew members are Pilot Jeffrey S. Ashby, Mission Specialist Steven A. Hawley and Mission Specialist Michel Tognini of France. Targeted date for the launch of STS-93 is March 18, 1999 KSC-98pc1687

In the Orbiter Processing Facility Bay 3, during the Crew Equipment In...

In the Orbiter Processing Facility Bay 3, during the Crew Equipment Interface Test (CEIT), Mission Specialist Catherine G. Coleman (left) and Mission Commander Eileen M. Collins (right) check equipment that wil... More

The Space Shuttle orbiter Columbia sits outside the Orbiter Processing Facility bay 1 after transfer from the Vehicle Assembly Building. Columbia will undergo processing for mission STS-93, targeted for launch in July 1999. The STS-93 mission will deploy the Chandra X-ray Observatory (formerly AXAF) which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). Chandra will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. The STs-93 mission commander is Eileen M. Collins, the first woman to serve in that capacity KSC-99pp0413

The Space Shuttle orbiter Columbia sits outside the Orbiter Processing...

The Space Shuttle orbiter Columbia sits outside the Orbiter Processing Facility bay 1 after transfer from the Vehicle Assembly Building. Columbia will undergo processing for mission STS-93, targeted for launch ... More

Inside the Vertical Processing Facility, the Chandra X-ray Observatory sits inside the payload canister, ready to be moved to Launch Pad 39B. Liftoff will take place no earlier than July 20 at 12:36 a.m. EDT aboard Space Shuttle Columbia, on mission STS-93. Chandra will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe, map the location of dark matter and help to identify it, and probe the faintest of active galaxies, allowing scientists to study not only how their energy output changes with time, but also how these objects produce their intense energy emissions in the first place. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe KSC-99pp0708

Inside the Vertical Processing Facility, the Chandra X-ray Observatory...

Inside the Vertical Processing Facility, the Chandra X-ray Observatory sits inside the payload canister, ready to be moved to Launch Pad 39B. Liftoff will take place no earlier than July 20 at 12:36 a.m. EDT ab... More

Inside the Vertical Processing Facility, doors on the payload canister begin to close on the Chandra X-ray Observatory inside before being moved to Launch Pad 39B. Liftoff will take place no earlier than July 20 at 12:36 a.m. EDT aboard Space Shuttle Columbia, on mission STS-93. Chandra will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe, map the location of dark matter and help to identify it, and probe the faintest of active galaxies, allowing scientists to study not only how their energy output changes with time, but also how these objects produce their intense energy emissions in the first place. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe KSC-99pp0709

Inside the Vertical Processing Facility, doors on the payload canister...

Inside the Vertical Processing Facility, doors on the payload canister begin to close on the Chandra X-ray Observatory inside before being moved to Launch Pad 39B. Liftoff will take place no earlier than July 2... More

STS-93 Commander Eileen M. Collins talks to the media after arriving at KSC's Shuttle Landing Facility to participate in Terminal Countdown Demonstration Tests (TCDT) this week. TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Collins is the first woman to serve as mission commander. Joining Collins are Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe KSC-99pp0714

STS-93 Commander Eileen M. Collins talks to the media after arriving a...

STS-93 Commander Eileen M. Collins talks to the media after arriving at KSC's Shuttle Landing Facility to participate in Terminal Countdown Demonstration Tests (TCDT) this week. TCDT activities familiarize the ... More

The STS-93 crew pose for photographers and the media after arriving at KSC's Shuttle Landing Facility to participate in Terminal Countdown Demonstration Tests (TCDT) this week. From left are Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, Commander Eileen M. Collins at the microphone, Pilot Jeffrey S. Ashby, and Mission Specialist Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe KSC-99pp0715

The STS-93 crew pose for photographers and the media after arriving at...

The STS-93 crew pose for photographers and the media after arriving at KSC's Shuttle Landing Facility to participate in Terminal Countdown Demonstration Tests (TCDT) this week. From left are Mission Specialists... More

STS-93 Commander Eileen M. Collins smiles on her arrival at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft to participate in Terminal Countdown Demonstration Tests (TCDT) this week. TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Joining Collins are Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe KSC-99pp0710

STS-93 Commander Eileen M. Collins smiles on her arrival at KSC's Shut...

STS-93 Commander Eileen M. Collins smiles on her arrival at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft to participate in Terminal Countdown Demonstration Tests (TCDT) this week. TCDT activities f... More

STS-93 Mission Specialist Steven A. Hawley (Ph.D.) grins as he steps down from a T-38 jet aircraft after landing at KSC's Shuttle Landing Facility. The STS-93 crew are at KSC to participate in Terminal Countdown Demonstration Tests (TCDT) this week. TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Joining Hawley are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe KSC-99pp0713

STS-93 Mission Specialist Steven A. Hawley (Ph.D.) grins as he steps d...

STS-93 Mission Specialist Steven A. Hawley (Ph.D.) grins as he steps down from a T-38 jet aircraft after landing at KSC's Shuttle Landing Facility. The STS-93 crew are at KSC to participate in Terminal Countdow... More

STS-93 Michel Tognini of France arrives at KSC's Shuttle Landing Facility to participate in Terminal Countdown Demonstration Tests (TCDT) this week. TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Joining Tognini are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Catherine G. Coleman (Ph.D.) and Steven A. Hawley (Ph.D.). Tognini represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe KSC-99pp0712

STS-93 Michel Tognini of France arrives at KSC's Shuttle Landing Facil...

STS-93 Michel Tognini of France arrives at KSC's Shuttle Landing Facility to participate in Terminal Countdown Demonstration Tests (TCDT) this week. TCDT activities familiarize the crew with the mission, provid... More

STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) grins on her arrival at KSC's Shuttle Landing Facility aboard a T-38 jet to participate in Terminal Countdown Demonstration Tests (TCDT) this week. TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Joining Coleman are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who is with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe KSC-99pp0711

STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) grins on her ar...

STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) grins on her arrival at KSC's Shuttle Landing Facility aboard a T-38 jet to participate in Terminal Countdown Demonstration Tests (TCDT) this week. TCDT ac... More

STS-93 Commander Eileen M. Collins climbs into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. Collins is the first woman to serve as mission commander. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B KSC-99pp0726

STS-93 Commander Eileen M. Collins climbs into an M-113 armored person...

STS-93 Commander Eileen M. Collins climbs into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. Collins is the first woman to serve as mission commander. In prepar... More

During emergency egress training inside an M-113 armored personnel carrier at the launch pad, Mission Specialist Michel Tognini of France and Commander Eileen M. Collins share a light moment. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Also at KSC are Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), and Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B KSC-99pp0725

During emergency egress training inside an M-113 armored personnel car...

During emergency egress training inside an M-113 armored personnel carrier at the launch pad, Mission Specialist Michel Tognini of France and Commander Eileen M. Collins share a light moment. In preparation for... More

STS-93 Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), pauses for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B KSC-99pp0728

STS-93 Michel Tognini of France, who represents the Centre National d'...

STS-93 Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), pauses for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part ... More

The STS-93 crew pose in front of an M-113, an armored personnel carrier, which they will use for emergency egress training from the launch pad. From left are Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, Mission Specialist Michel Tognini of France, Commander Eileen M. Collins and Mission Specialist Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B KSC-99pp0723

The STS-93 crew pose in front of an M-113, an armored personnel carrie...

The STS-93 crew pose in front of an M-113, an armored personnel carrier, which they will use for emergency egress training from the launch pad. From left are Mission Specialist Steven A. Hawley (Ph.D.), Pilot J... More

STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) smiles for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B KSC-99pp0729

STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) smiles for the ...

STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) smiles for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In prepara... More

Under the watchful eyes of Capt. George Hoggard (left), trainer with the KSC Fire Department, STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) drives the M-113 armored personnel carrier during emergency egress training at the launch pad. Behind her is Pilot Jeffrey S. Ashby and Commander Eileen M. Collins. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew participating are Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B KSC-99pp0730

Under the watchful eyes of Capt. George Hoggard (left), trainer with t...

Under the watchful eyes of Capt. George Hoggard (left), trainer with the KSC Fire Department, STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) drives the M-113 armored personnel carrier during emergency e... More

Under the watchful eyes of KSC Fire Department trainer Capt. George Hoggard (seated on the front), STS-93 Mission Specialist Michel Tognini of France (right) drives the M-113 armored personnel carrier during emergency egress training at the launch pad. Tognini represents the Centre National d'Etudes Spatiales (CNES). At the far left is Roland Nedelkovich, with the Vehicle Integration Test Team, JSC. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew participating are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Catherine G. Coleman (Ph.D.) Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B KSC-99pp0732

Under the watchful eyes of KSC Fire Department trainer Capt. George Ho...

Under the watchful eyes of KSC Fire Department trainer Capt. George Hoggard (seated on the front), STS-93 Mission Specialist Michel Tognini of France (right) drives the M-113 armored personnel carrier during em... More

STS-93 Mission Specialist Steven A. Hawley (Ph.D.) smiles for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Catherine G. Coleman (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B KSC-99pp0731

STS-93 Mission Specialist Steven A. Hawley (Ph.D.) smiles for the phot...

STS-93 Mission Specialist Steven A. Hawley (Ph.D.) smiles for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation... More

STS-93 Pilot Jeffrey S. Ashby pauses for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B KSC-99pp0727

STS-93 Pilot Jeffrey S. Ashby pauses for the photographer before climb...

STS-93 Pilot Jeffrey S. Ashby pauses for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, t... More

Inside an M-113 armored personnel carrier at the launch pad, the STS-93 crew take part in emergency egress training under the watchful eyes of Capt. George Hoggard (center), trainer with the KSC Fire Department. From left are Mission Specialist Michel Tognini of France, Commander Eileen M. Collins, Hoggard, Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, and Mission Specialist Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). The training is part of Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B KSC-99pp0724

Inside an M-113 armored personnel carrier at the launch pad, the STS-9...

Inside an M-113 armored personnel carrier at the launch pad, the STS-93 crew take part in emergency egress training under the watchful eyes of Capt. George Hoggard (center), trainer with the KSC Fire Department... More

STS-93 Commander Eileen Collins waves to spectators after landing at Kennedy Space Center's Shuttle Landing Facility (SLF) aboard a T-38 jet aircraft. She and other crew members Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. "Cady" Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES), are arriving for pre-launch activities. Collins is the first woman to serve as mission commander. This is her third Shuttle flight. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0822

STS-93 Commander Eileen Collins waves to spectators after landing at K...

STS-93 Commander Eileen Collins waves to spectators after landing at Kennedy Space Center's Shuttle Landing Facility (SLF) aboard a T-38 jet aircraft. She and other crew members Pilot Jeffrey S. Ashby and Missi... More

STS-93 Commander Eileen Collins poses for photographers in the early morning sun after landing at Kennedy Space Center's Shuttle Landing Facility (SLF) aboard a T-38 jet aircraft (background). She and other crew members Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. "Cady" Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES), are arriving for pre-launch activities. Collins is the first woman to serve as mission commander. This is her third Shuttle flight. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0828

STS-93 Commander Eileen Collins poses for photographers in the early m...

STS-93 Commander Eileen Collins poses for photographers in the early morning sun after landing at Kennedy Space Center's Shuttle Landing Facility (SLF) aboard a T-38 jet aircraft (background). She and other cre... More

STS-93 Mission Specialist Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES), prepares to leave the T-38 jet aircraft that brought him to KSC's Shuttle Landing Facility. He and other crew members Commander Eileen Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Catherine G. "Cady" Coleman (Ph.D.) are arriving for pre-launch activities. Tognini is making his inaugural Shuttle flight. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0824

STS-93 Mission Specialist Michel Tognini of France, with the Centre Na...

STS-93 Mission Specialist Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES), prepares to leave the T-38 jet aircraft that brought him to KSC's Shuttle Landing Facility. He and other c... More

The STS-93 crew leave the Shuttle Landing Facility after answering questions for the media and posing for photographers, whose shadows stretch across the SLF. From left are Mission Specialists Michel Tognini of France, who is with the Centre National d'Etudes Spatiales (CNES) and Steven A. Hawley (Ph.D.), Commander Eileen M. Collins (waving), Mission Specialist Catherine G. "Cady" Coleman (Ph.D.), and Pilot Jeffrey S. Ashby. The crew arrived at KSC for pre-launch activities. Collins is the first woman to serve as mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0830

The STS-93 crew leave the Shuttle Landing Facility after answering que...

The STS-93 crew leave the Shuttle Landing Facility after answering questions for the media and posing for photographers, whose shadows stretch across the SLF. From left are Mission Specialists Michel Tognini of... More

STS-93 Pilot Jeffrey S. Ashby lands at Kennedy Space Center's Shuttle Landing Facility (SLF) aboard a T-38 jet aircraft. He and other crew members Commander Eileen Collins and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. "Cady" Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES), are arriving for pre-launch activities. STS-93 is Ashby's inaugural Shuttle flight. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0823

STS-93 Pilot Jeffrey S. Ashby lands at Kennedy Space Center's Shuttle ...

STS-93 Pilot Jeffrey S. Ashby lands at Kennedy Space Center's Shuttle Landing Facility (SLF) aboard a T-38 jet aircraft. He and other crew members Commander Eileen Collins and Mission Specialists Steven A. Hawl... More

STS-93 Commander Eileen Collins peers into the eastern early morning sky after landing at Kennedy Space Center's Shuttle Landing Facility (SLF) aboard a T-38 jet aircraft (background). She and other crew members Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. "Cady" Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES), are arriving for pre-launch activities. Collins is the first woman to serve as mission commander. This is her third Shuttle flight. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0829

STS-93 Commander Eileen Collins peers into the eastern early morning s...

STS-93 Commander Eileen Collins peers into the eastern early morning sky after landing at Kennedy Space Center's Shuttle Landing Facility (SLF) aboard a T-38 jet aircraft (background). She and other crew member... More

STS-93 Mission Specialist Catherine G. "Cady" Coleman (Ph.D.) shows her sense of humor upon arriving at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. She and other crew members Commander Eileen Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES), are arriving for pre-launch activities. Coleman is making her second Shuttle flight. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0825

STS-93 Mission Specialist Catherine G. "Cady" Coleman (Ph.D.) shows he...

STS-93 Mission Specialist Catherine G. "Cady" Coleman (Ph.D.) shows her sense of humor upon arriving at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. She and other crew members Commander Eileen Col... More

After arrival at KSC's Shuttle Landing Facility, the STS-93 crew speak to the media about their mission. From left are Mission Specialists Michel Tognini of France, who is with the Centre National d'Etudes Spatiales (CNES), Steven A. Hawley (Ph.D.), and Catherine G. "Cady" Coleman (Ph.D.), Pilot Jeffrey S. Ashby, and Commander Eileen M. Collins. Hawley has the most Shuttle flights, this being his fifth. Collins is making her third flight (the first as a commander), Coleman is making her second flight, and Ashby and Tognini are making their first flights. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0827

After arrival at KSC's Shuttle Landing Facility, the STS-93 crew speak...

After arrival at KSC's Shuttle Landing Facility, the STS-93 crew speak to the media about their mission. From left are Mission Specialists Michel Tognini of France, who is with the Centre National d'Etudes Spat... More

Center Director Roy D. Bridges Jr. greets STS-93 Commander Eileen M. Collins after her arrival at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft (behind her). She and other crew members Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. "Cady" Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES), are arriving for pre-launch activities. Collins is the first woman to serve as mission commander. This is her third Shuttle flight. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0826

Center Director Roy D. Bridges Jr. greets STS-93 Commander Eileen M. C...

Center Director Roy D. Bridges Jr. greets STS-93 Commander Eileen M. Collins after her arrival at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft (behind her). She and other crew members Pilot Jeffrey... More

KENNEDY SPACE CENTER, FLA. -- NASA Administrator Daniel Goldin addresses the attendees of a women's forum held in the Apollo/Saturn V Center. Participants in a panel discussion, "Past, Present and Future of Space," include former astronaut Sally Ride; Marta Bohn-Meyer, the first SR-71 female pilot; Kathryn Sullivan, Ph.D., the first American woman to walk in space; Donna Shirley, Ph.D., the first woman leading the Mars Exploration Program; astronaut Yvonne Cagle; Jennifer Harris, flight director, Mars Pathfinder; astronaut Ellen Ochoa, the first Hispanic female in space and member of the President's commission on the Celebration of Women in American History. The forum included a welcome by Center Director Roy Bridges and remarks by Donna Shalala, secretary of Department of Health and Human Services. The attendees are planning to view the launch of STS-93 at the Banana Creek viewing sight. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Liftoff is scheduled for July 20 at 12:36 a.m. EDT KSC-99pp0905

KENNEDY SPACE CENTER, FLA. -- NASA Administrator Daniel Goldin address...

KENNEDY SPACE CENTER, FLA. -- NASA Administrator Daniel Goldin addresses the attendees of a women's forum held in the Apollo/Saturn V Center. Participants in a panel discussion, "Past, Present and Future of Spa... More

In the Operations and Checkout Building, STS-93 Mission Specialist Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), waves after donning his launch and entry suit during final launch preparations. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Tognini. Collins is the first woman to serve as commander of a shuttle mission. STS-93 is scheduled to lift off at 12:36 a.m. EDT July 20. The target landing date is July 24 at 11:30 p.m. EDT KSC-99pp0869

In the Operations and Checkout Building, STS-93 Mission Specialist Mic...

In the Operations and Checkout Building, STS-93 Mission Specialist Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), waves after donning his launch and entry suit during fi... More

The Rotating Service Structure is rolled back from Space Shuttle Columbia on Launch Pad 39-B, in preparation for launch of mission STS-93 July 20 at 12:36 a.m. EDT. The primary payload of STS-93 is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission KSC-99pp0861

The Rotating Service Structure is rolled back from Space Shuttle Colum...

The Rotating Service Structure is rolled back from Space Shuttle Columbia on Launch Pad 39-B, in preparation for launch of mission STS-93 July 20 at 12:36 a.m. EDT. The primary payload of STS-93 is the Chandra ... More

Attendees of a women's forum held at the Apollo/Saturn V Center, get a guided tour of the Orbiter Processing Facility and a closeup look at an orbiter overhead. The forum included a welcome by Center Director Roy Bridges, remarks by NASA Administrator Daniel Goldin, and a panel discussion, "Past, Present and Future of Space." The attendees are planning to view the launch of STS-93 at the Banana Creek viewing sight. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Liftoff is scheduled for July 20 at 12:36 a.m. EDT KSC-99pp0908

Attendees of a women's forum held at the Apollo/Saturn V Center, get a...

Attendees of a women's forum held at the Apollo/Saturn V Center, get a guided tour of the Orbiter Processing Facility and a closeup look at an orbiter overhead. The forum included a welcome by Center Director R... More

Generating her own attention waiting for the launch of STS-93 at the VIP viewing site is Chelsea Clinton, daughter of the President and Mrs. Clinton. The First Lady and Chelsea arrived earlier to view the launch. Much attention has been generated over STS-93 due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes. Liftoff of Space Shuttle Columbia is scheduled for 12:36 a.m. EDT July 20 KSC-99pp0897

Generating her own attention waiting for the launch of STS-93 at the V...

Generating her own attention waiting for the launch of STS-93 at the VIP viewing site is Chelsea Clinton, daughter of the President and Mrs. Clinton. The First Lady and Chelsea arrived earlier to view the launc... More

The STS-93 crew wave to onlookers as they walk out of the Operations and Checkout Building enroute to Launch Pad 39-B and liftoff of Space Shuttle Columbia. In their orange launch and entry suits, they are (starting at rear, left to right) Mission Specialists Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), and Catherine G. Coleman (Ph.D.); Pilot Jeffrey S. Ashby; Mission Specialist Stephen A. Hawley (Ph.D.); and Commander Eileen M. Collins. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. Collins is the first woman to serve as commander of a Shuttle mission. STS-93 is scheduled to lift off at 12:36 a.m. EDT July 20. The target landing date is July 24 at 11:31 p.m. EDT KSC-99pp0872

The STS-93 crew wave to onlookers as they walk out of the Operations a...

The STS-93 crew wave to onlookers as they walk out of the Operations and Checkout Building enroute to Launch Pad 39-B and liftoff of Space Shuttle Columbia. In their orange launch and entry suits, they are (sta... More

In the Operations and Checkout Building, STS-93 Commander Eileen M. Collins waves while a suit tech adjusts her boot, part of the launch and entry suit, during final launch preparations. STS-93 is a five-day mission primarily to release the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Stephen A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission. STS-93 is scheduled to lift off at 12:36 a.m. EDT July 20. The target landing date is July 24 at 11:30 p.m. EDT KSC-99pp0868

In the Operations and Checkout Building, STS-93 Commander Eileen M. Co...

In the Operations and Checkout Building, STS-93 Commander Eileen M. Collins waves while a suit tech adjusts her boot, part of the launch and entry suit, during final launch preparations. STS-93 is a five-day mi... More

A member of the U.S. Women's World Cup Soccer Team is greeted by NASA Astronaut Scott E. Parazynski (left) upon her arrival at the Skid Strip at Cape Canaveral Air Station as her teammates look on. The team is at KSC to view the launch of Space Shuttle mission STS-93 scheduled for liftoff at 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0885

A member of the U.S. Women's World Cup Soccer Team is greeted by NASA ...

A member of the U.S. Women's World Cup Soccer Team is greeted by NASA Astronaut Scott E. Parazynski (left) upon her arrival at the Skid Strip at Cape Canaveral Air Station as her teammates look on. The team is ... More

Members of the U.S. Women's World Cup Soccer Team were greeted upon their arrival at the Skid Strip at Cape Canaveral Air Station by Astronauts (right) Steven W. Lindsey, Heidemarie M. Stefanyshyn-Piper and Scott E. Parzynski. The team are here to view the launch of Space Shuttle mission STS-93, scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0887

Members of the U.S. Women's World Cup Soccer Team were greeted upon th...

Members of the U.S. Women's World Cup Soccer Team were greeted upon their arrival at the Skid Strip at Cape Canaveral Air Station by Astronauts (right) Steven W. Lindsey, Heidemarie M. Stefanyshyn-Piper and Sco... More

Upon their arrival at the Skid Strip at Cape Canaveral Air Station, First Lady Hillary Rodham Clinton and her daughter, Chelsea, are greeted by NASA Administrator Daniel S. Goldin and Mrs. Goldin. Mrs. Clinton and Chelsea are here to view the launch of Space Shuttle mission STS-93, scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes KSC-99pp0889

Upon their arrival at the Skid Strip at Cape Canaveral Air Station, Fi...

Upon their arrival at the Skid Strip at Cape Canaveral Air Station, First Lady Hillary Rodham Clinton and her daughter, Chelsea, are greeted by NASA Administrator Daniel S. Goldin and Mrs. Goldin. Mrs. Clinton ... More

STS-93 Commander Eileen M. Collins waves to her family nearby, a last meeting before launch of mission STS-93 on July 20. Liftoff is scheduled for 12:36 a.m. EDT. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes. The STS-93 crew numbers five: Commander Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.) and Michel Tognini of France, with the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as commander of a shuttle mission KSC-99pp0865

STS-93 Commander Eileen M. Collins waves to her family nearby, a last ...

STS-93 Commander Eileen M. Collins waves to her family nearby, a last meeting before launch of mission STS-93 on July 20. Liftoff is scheduled for 12:36 a.m. EDT. The primary mission of STS-93 is the release of... More

KENNEDY SPACE CENTER, FLA. -- At a women's forum held in the Apollo/Saturn V Center, Donna Shalala, secretary of Department of Health and Human Services, addresses the attendees. At the far left is NASA Administrator Daniel Goldin. Participants in a panel discussion, "Past, Present and Future of Space," include former astronaut Sally Ride; Marta Bohn-Meyer, the first SR-71 female pilot; Kathryn Sullivan, Ph.D., the first American woman to walk in space; Donna Shirley, Ph.D., the first woman leading the Mars Exploration Program; astronaut Yvonne Cagle; Jennifer Harris, flight director, Mars Pathfinder; astronaut Ellen Ochoa, the first Hispanic female in space and member of the President's commission on the Celebration of Women in American History. The forum included a welcome by Center Director Roy Bridges and remarks by Goldin. The attendees are planning to view the launch of STS-93 at the Banana Creek viewing sight. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Liftoff is scheduled for July 20 at 12:36 a.m. EDT KSC-99pp0906

KENNEDY SPACE CENTER, FLA. -- At a women's forum held in the Apollo/Sa...

KENNEDY SPACE CENTER, FLA. -- At a women's forum held in the Apollo/Saturn V Center, Donna Shalala, secretary of Department of Health and Human Services, addresses the attendees. At the far left is NASA Adminis... More

Previous

of 9

Next