Planet Earth

gas, rocket

1,089 media by topicpage 1 of 11
CAPE CANAVERAL, Fla. -- Space shuttle Endeavour is firmly attached to its external fuel tank and solid rocket boosters in a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Endeavour is targeted to roll out to Kennedy's Launch Pad 39A for its final mission, STS-134, on March 9. Endeavour and the six-member crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-2041

CAPE CANAVERAL, Fla. -- Space shuttle Endeavour is firmly attached to ...

CAPE CANAVERAL, Fla. -- Space shuttle Endeavour is firmly attached to its external fuel tank and solid rocket boosters in a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. E... More

CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft into Astrotech's payload processing facility in Titusville, Fla. to begin final testing and preparations for launch.        The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2818

CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft...

CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft into Astrotech's payload processing facility in Titusville, Fla. to begin final testing and preparations for launch. The solar-power... More

CAPE CANAVERAL, Fla. - The giant external fuel tank and twin solid rocket boosters attached to space shuttle Endeavour bask in the sunlight as the rotating service structure (RSS) moves away on Launch Pad 39A at NASA's Kennedy Space Center in Florida. The structure provides weather protection and access to the shuttle while it awaits lift off on the pad. RSS "rollback," as it's called, began at 11:44 a.m. EDT on May 15 and was completed at 12:24 p.m.           STS-134 will deliver the Alpha Magnetic Spectrometer-2 (AMS), Express Logistics Carrier-3, a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. May 16 at 8:56 a.m. will be the second launch attempt for Endeavour. The first attempt on April 29 was scrubbed because of an issue associated with a faulty power distribution box called the aft load control assembly-2 (ALCA-2). STS-134 will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller KSC-2011-3551

CAPE CANAVERAL, Fla. - The giant external fuel tank and twin solid roc...

CAPE CANAVERAL, Fla. - The giant external fuel tank and twin solid rocket boosters attached to space shuttle Endeavour bask in the sunlight as the rotating service structure (RSS) moves away on Launch Pad 39A a... More

KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service Structure on Launch Pad 39B, Space Shuttle Endeavour is bathed in light.  Twin solid rocket boosters flank the orange external tank behind Endeavour.  Above the external tank is the Gaseous Oxygen Vent Arm that vents gaseous oxygen vapors away from the Shuttle.  The vent hood assembly at the end is often referred to as the "beanie cap."  Stretching to the crew hatch on the side of Endeavour is the Orbiter Access Arm with its environmentally controlled White Room at the end, through which the crew enters the vehicle.  The Shuttle sits on the Mobile Launcher Platform with the two service tail masts on either side of the main engines.  The tail masts support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals.  Each tail mast is 31 feet (9.4 meters) high, 15 feet (4.6 meters) long and 9 feet (3.1 meters) wide.   Endeavour is scheduled to launch on mission STS-108 Dec. 4 at 5:45  p.m. EST.  On this 12th flight to the International Space Station, known as a Utilization Flight, Endeavour will carry a crew of four plus the Expedition 4 crew, who will replace Expedition 3 aboard the ISS.  The payload includes the Multi-Purpose Logistics Module Raffaello, filled with supplies, equipment and experiments KSC01PD1763

KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service S...

KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service Structure on Launch Pad 39B, Space Shuttle Endeavour is bathed in light. Twin solid rocket boosters flank the orange external tank behind En... More

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour rests on Launch Pad 39A after rollout from the Vehicle Assembly Building.  The Shuttle comprises the orbiter, in front, and the taller orange external tank behind it flanked by twin solid rocket boosters. On either side of Endeavour's tail and main engines are the tail service masts that support the fluid,, gas and electrical requirements of the orbiter's liquid oxyen and liquid hydrogen aft T-0 umbilicals. Mission STS-111 is designated UF-2, the 14th assembly flight to the International Space Station.  Endeavour's payload includes the Multi-Purpose Logistics Module Leonardo and Mobile Base System.  The mission also will swap resident crews on the Station, carrying the Expedition 5 crew and returning to Earth Expedition 4.  Liftoff of Endeavour is scheduled between 4 and 8 p.m. May 30, 2002 KSC-02pd0591

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour rests on Launch ...

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour rests on Launch Pad 39A after rollout from the Vehicle Assembly Building. The Shuttle comprises the orbiter, in front, and the taller orange external tank ... More

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processing facility in Titusville, Fla. install thermal insulation on NASA's Juno magnetometer boom. The boom structure is attached to Juno's solar array #1 that will help power the NASA spacecraft on its mission to Jupiter.      The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2821

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processin...

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processing facility in Titusville, Fla. install thermal insulation on NASA's Juno magnetometer boom. The boom structure is attached to Juno's solar a... More

CAPE CANAVERAL, Fla. -- Operations are under way to roll the protective rotating service structure, at left, around space shuttle Endeavour upon its arrival at Launch Pad 39A at NASA's Kennedy Space Center in Florida.    Riding atop a crawler-transporter attached to its external fuel tank and solid rocket boosters, Endeavour's 3.4-mile trek, known as "rollout," began at the Vehicle Assembly Building at 7:56 p.m. EST March 10 and ended at 3:49 a.m. EST, nearly eight hours later. This is Endeavour's final scheduled rollout.  Endeavour and its six-member crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station on the shuttle's final spaceflight, STS-134. Launch is targeted for 7:48 p.m. EDT April 19. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller KSC-2011-2239

CAPE CANAVERAL, Fla. -- Operations are under way to roll the protectiv...

CAPE CANAVERAL, Fla. -- Operations are under way to roll the protective rotating service structure, at left, around space shuttle Endeavour upon its arrival at Launch Pad 39A at NASA's Kennedy Space Center in F... More

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's payload processing facility in Titusville, Fla. remove the protective wrapping from NASA's Juno spacecraft to begin final testing and preparations for launch.      The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2829

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's pay...

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's payload processing facility in Titusville, Fla. remove the protective wrapping from NASA's Juno spacecraft to begin final testing and preparati... More

CAPE CANAVERAL, Fla. -- Space shuttle Endeavour, attached to its external fuel tank and solid rocket boosters atop a crawler-transporter, is ready for its slow move from High Bay 3 in the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. The 3.4-mile trek, known as "rollout," will take about seven hours to complete. This is the final scheduled rollout for Endeavour.      Endeavour and its six STS-134 crew members will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station on the shuttle's final spaceflight. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jim Grossmann KSC-2011-2214

CAPE CANAVERAL, Fla. -- Space shuttle Endeavour, attached to its exter...

CAPE CANAVERAL, Fla. -- Space shuttle Endeavour, attached to its external fuel tank and solid rocket boosters atop a crawler-transporter, is ready for its slow move from High Bay 3 in the Vehicle Assembly Build... More

Vent Flowing Cold Gas and T/C Rake

Vent Flowing Cold Gas and T/C Rake

(September 6, 1963) Vent flowing cryogenic fuel and T/C Rake mounted on a 1/10 scale model Centaur in the l0 x l0 Foot Supersonic Wind Tunnel. The fuel being used is liquid hydrogen. The point of the test is to... More

CAPE CANAVERAL, Fla. -- STS-134 Pilot Greg H. Johnson talks to media as the space shuttle that will take Johnson and his crewmates to the International Space Station slowly rolls past. Endeavour began its move from High Bay 3 in the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida at 7:56 p.m. EST. The 3.4-mile trek, known as "rollout," will take about seven hours to complete. This is the final scheduled rollout for Endeavour, which is attached to its external fuel tank and solid rocket boosters atop a crawler-transporter.      STS-134 crew members will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the orbiting outpost on the shuttle's final spaceflight. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Debbie Odom KSC-2011-2215

CAPE CANAVERAL, Fla. -- STS-134 Pilot Greg H. Johnson talks to media a...

CAPE CANAVERAL, Fla. -- STS-134 Pilot Greg H. Johnson talks to media as the space shuttle that will take Johnson and his crewmates to the International Space Station slowly rolls past. Endeavour began its move ... More

OLD ROCKET LABORATORY TEST CELL 11 - HEAT EXCHANGER - GAS SAMPLE PROBE - CONTROL ROOM - PROBE ACTUATOR

OLD ROCKET LABORATORY TEST CELL 11 - HEAT EXCHANGER - GAS SAMPLE PROBE...

The original finding aid described this as: Capture Date: 7/2/1975 Photographer: MARTIN BROWN Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

OLD ROCKET LABORATORY TEST CELL 11 - HEAT EXCHANGER - GAS SAMPLE PROBE - CONTROL ROOM - PROBE ACTUATOR

OLD ROCKET LABORATORY TEST CELL 11 - HEAT EXCHANGER - GAS SAMPLE PROBE...

The original finding aid described this as: Capture Date: 7/2/1975 Photographer: MARTIN BROWN Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

OLD ROCKET LABORATORY TEST CELL 11 - HEAT EXCHANGER - GAS SAMPLE PROBE - CONTROL ROOM - PROBE ACTUATOR

OLD ROCKET LABORATORY TEST CELL 11 - HEAT EXCHANGER - GAS SAMPLE PROBE...

The original finding aid described this as: Capture Date: 7/2/1975 Photographer: MARTIN BROWN Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, shuttle Endeavour is being lowered into place where it will be attached to its external fuel tank and solid rocket boosters, already positioned on the mobile launcher platform. Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jim Grossmann KSC-2011-1978

CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Ken...

CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, shuttle Endeavour is being lowered into place where it will be attached to its external fuel tank and solid ro... More

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, this image shows the rear of space shuttle Endeavour and it covered three main engines as a worker attaches an overhead crane. The crane will lift the spacecraft into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final mission, STS-134.      Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin KSC-2011-1924

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly ...

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, this image shows the rear of space shuttle Endeavour and it covered three main engines a... More

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers attach an overhead crane to the rear of space shuttle Endeavour. The crane will lift the spacecraft into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final mission, STS-134.          Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin KSC-2011-1926

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly ...

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers attach an overhead crane to the rear of space shuttle Endeavour. The crane will ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Endeavour enters the transfer aisle of the Vehicle Assembly Building (VAB). In the VAB, Endeavour will be lifted into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final mission, STS-134.    Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller KSC-2011-1904

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, spa...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Endeavour enters the transfer aisle of the Vehicle Assembly Building (VAB). In the VAB, Endeavour will be lifted into a high bay ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Endeavour is stationed in the transfer aisle of the Vehicle Assembly Building (VAB). In the VAB, Endeavour will be lifted into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final mission, STS-134.  Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller KSC-2011-1905

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, spa...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Endeavour is stationed in the transfer aisle of the Vehicle Assembly Building (VAB). In the VAB, Endeavour will be lifted into a ... More

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, this image shows the rear of space shuttle Endeavour and it covered three main engines as a worker attaches an overhead crane. The crane will lift the spacecraft into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final mission, STS-134.    Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin KSC-2011-1925

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly ...

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, this image shows the rear of space shuttle Endeavour and it covered three main engines a... More

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a worker  attaches an overhead crane to space shuttle Endeavour. The crane will lift the spacecraft into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final mission, STS-134.        Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin KSC-2011-1923

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly ...

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a worker attaches an overhead crane to space shuttle Endeavour. The crane will lift the... More

UNLOADING OF 3 6000 PSI POUNDS PER SQUARE INCH GAS STORAGE BOTTLES IN BACK OF ORL OLD ROCKET LAB WITH O DICKERSON AND J VANCE

UNLOADING OF 3 6000 PSI POUNDS PER SQUARE INCH GAS STORAGE BOTTLES IN ...

The original finding aid described this as: Capture Date: 4/8/1980 Photographer: DANIEL LAITY Keywords: Larsen Scan Location Building No: 35 Photographs Relating to Agency Activities, Facilities and Personnel

CAPE CANAVERAL, Fla. -- This panoramic image shows space shuttle Endeavour in the transfer aisle of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, where workers have attached an overhead crane to the spacecraft. The crane will lift Endeavour into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final mission, STS-134.            Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin KSC-2011-1928

CAPE CANAVERAL, Fla. -- This panoramic image shows space shuttle Endea...

CAPE CANAVERAL, Fla. -- This panoramic image shows space shuttle Endeavour in the transfer aisle of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, where workers have attached an overhe... More

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a worker  attaches an overhead crane to space shuttle Endeavour. The crane will lift the spacecraft into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final mission, STS-134.        Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin KSC-2011-1927

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly ...

CAPE CANAVERAL, Fla. -- In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a worker attaches an overhead crane to space shuttle Endeavour. The crane will lift the... More

UNLOADING OF 3 6000 PSI POUNDS PER SQUARE INCH GAS STORAGE BOTTLES IN BACK OF ORL OLD ROCKET LAB WITH O DICKERSON AND J VANCE

UNLOADING OF 3 6000 PSI POUNDS PER SQUARE INCH GAS STORAGE BOTTLES IN ...

The original finding aid described this as: Capture Date: 4/8/1980 Photographer: DANIEL LAITY Keywords: Larsen Scan Location Building No: 35 Photographs Relating to Agency Activities, Facilities and Personnel

CAPE CANAVERAL, Fla. -- A large yellow, metal sling lifts shuttle Endeavour from the transfer aisle into a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. In the bay, the shuttle will be attached to its external fuel tank and solid rocket boosters. Endeavour is targeted to roll out to Kennedy's Launch Pad 39A for its final mission, STS-134, on March 9. Endeavour and the six-member crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. Endeavour's final launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin KSC-2011-1985

CAPE CANAVERAL, Fla. -- A large yellow, metal sling lifts shuttle Ende...

CAPE CANAVERAL, Fla. -- A large yellow, metal sling lifts shuttle Endeavour from the transfer aisle into a high bay of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. In the bay, the sh... More

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October KSC-98pc1262

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), make adjustments while installing the ion propulsion engine on ... More

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), maneuver the ion propulsion engine into place before installation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October KSC-98pc1263

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), maneuver the ion propulsion engine into place before installati... More

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), attach a strap during installation of the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October KSC-98pc1261

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), attach a strap during installation of the ion propulsion engine... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) finish installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS KSC-98pc1265

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) finish installing the ion propulsion engine on Deep Space 1. ... More

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), install an ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October KSC-98pc1260

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), install an ion propulsion engine on Deep Space 1. The first fli... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS KSC-98pc1264

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) make adjustments while installing the ion propulsion engine o... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), begin attaching the conical section leaves of the payload transportation container on Deep Space 1 before launch, targeted for Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1313

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), begin attaching the conical section leaves of the payload trans... More

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), workers place an anti-static blanket over the lower portion of Deep Space 1, to protect the spacecraft during transport to the launch pad. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS KSC-98pc1317

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications ...

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), workers place an anti-static blanket over the lower portion of Deep Sp... More

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), the lower part of Deep Space 1 is enclosed with the conical section leaves of the payload transportation container prior to its move to Launch Pad 17A. The spacecraft is targeted for launch Oct. 25 aboard a Boeing Delta 7326 rocket. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1315

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications ...

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), the lower part of Deep Space 1 is enclosed with the conical section le... More

KENNEDY SPACE CENTER, FLA. -  Wrapped in an antistatic blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications System Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) for its trip to Launch Pad 17A.  The spacecraft will be launched aboard Boeing's Delta 7326 rocket in October.  The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including an ion propulsion engine.  Propelled by the gas xenon, the engine is being flight tested for future deep space and Earth-orbiting missions.  Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine.  While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets.  Other onboard experiments include softwre that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers.  Deep Space 1 will complete most of its mission objectives within the firs two months, but will also make a flyby of a near-Earth asteroid, 1992 KD, in July 1999. KSC-98pc1318

KENNEDY SPACE CENTER, FLA. - Wrapped in an antistatic blanket for pro...

KENNEDY SPACE CENTER, FLA. - Wrapped in an antistatic blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications System Processing Facility (DPF) at Cape Canaveral Air Station (C... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the payload transportation container for Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS KSC-98pc1314

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the pa... More

KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) for its trip to Launch Pad 17A. The spacecraft will be launched aboard a Boeing Delta 7326 rocket on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1328

KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for pr...

KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station ... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers remove the transportation canister around Deep Space 1 after installation on a Boeing Delta 7326 rocket . Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1333

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers remove the transportation canister around Deep Space 1 after installation on a Boeing Delta 7326 rocket . Targeted for laun... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is lowered in the white room for installation on a Boeing Delta 7326 rocket . The spacecraft is targeted for launch on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1331

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is lowered in the white room for installation on a Boeing Delta 7326 rocket . The spacecraft is targeted for launch on... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is lowered toward the second stage of a Boeing Delta 7326 rocket. The adapter on the spacecraft can be seen surrounding the booster motor. Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1332

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is lowered toward the second stage of a Boeing Delta 7326 rocket. The adapter on the spacecraft can be seen surroundin... More

KENNEDY SPACE CENTER, FLA. -- Just before sunrise, on Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is hoisted up the mobile service tower for installation on a Boeing Delta 7326 rocket . The spacecraft is targeted for launch on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1330

KENNEDY SPACE CENTER, FLA. -- Just before sunrise, on Launch Pad 17A a...

KENNEDY SPACE CENTER, FLA. -- Just before sunrise, on Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is hoisted up the mobile service tower for installation on a Boeing Delta 7326 rocket . The space... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is viewed from above after installation on a Boeing Delta 7326 rocket . Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1334

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is viewed from above after installation on a Boeing Delta 7326 rocket . Targeted for launch on Oct. 25, Deep Space 1 i... More

KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is lifted out of the transporter that carried it to Launch Pad 17A at Cape Canaveral Air Station. The spacecraft will be launched aboard a Boeing Delta 7326 rocket on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1329

KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for pr...

KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is lifted out of the transporter that carried it to Launch Pad 17A at Cape Canaveral Air Station. The spacecraft will... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is uncovered after installation on a Boeing Delta 7326 rocket. Targeted for launch on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1335

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, Deep Space 1 is uncovered after installation on a Boeing Delta 7326 rocket. Targeted for launch on Oct. 25, Deep Space 1 is the fir... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers begin encapsulating Deep Space 1 with the fairing (right side). Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1346

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers begin encapsulating Deep Space 1 with the fairing (right side). Targeted for launch aboard a Boeing Delta 7326 rocket on Oc... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers maneuver part of the fairing (viewed from the inside) to encapsulate Deep Space 1. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1347

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers maneuver part of the fairing (viewed from the inside) to encapsulate Deep Space 1. Targeted for launch aboard a Boeing Delt... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, released from its protective payload transportation container, Deep Space 1 waits to have the fairing attached before launch. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1345

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, released from its protective payload transportation container, Deep Space 1 waits to have the fairing attached before launch. Targe... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers maneuver the second half of the fairing to encapsulate Deep Space 1, targeted for launch aboard a Boeing Delta II rocket on Oct. 24. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1354

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers maneuver the second half of the fairing to encapsulate Deep Space 1, targeted for launch aboard a Boeing Delta II rocket on... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers check make a final check of the fairing encapsulating Deep Space 1, which is targeted for launch aboard a Boeing Delta II rocket on Oct. 24. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1355

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17A at Cape Canaveral Air Station, workers check make a final check of the fairing encapsulating Deep Space 1, which is targeted for launch aboard a Boeing Delta II r... More

KENNEDY SPACE CENTER, FLA.  -- In a view from Press Site 1 at Cape Canaveral Air Station, a Boeing Delta II (7326) rocket lights up the ground as it propels Deep Space 1 into the sky after liftoff from Launch Complex 17A. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1385

KENNEDY SPACE CENTER, FLA. -- In a view from Press Site 1 at Cape Can...

KENNEDY SPACE CENTER, FLA. -- In a view from Press Site 1 at Cape Canaveral Air Station, a Boeing Delta II (7326) rocket lights up the ground as it propels Deep Space 1 into the sky after liftoff from Launch C... More

KENNEDY SPACE CENTER, FLA. -- Lighting up the launch pad, a Boeing Delta II (7326) rocket propels Deep Space 1 through the morning clouds after liftoff from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1382

KENNEDY SPACE CENTER, FLA. -- Lighting up the launch pad, a Boeing Del...

KENNEDY SPACE CENTER, FLA. -- Lighting up the launch pad, a Boeing Delta II (7326) rocket propels Deep Space 1 through the morning clouds after liftoff from Launch Complex 17A, Cape Canaveral Air Station. The f... More

KENNEDY SPACE CENTER, FLA. -- A Boeing Delta II (7326) rocket lights up the clouds of exhaust below as it propels Deep Space 1 into the sky after liftoff from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1384

KENNEDY SPACE CENTER, FLA. -- A Boeing Delta II (7326) rocket lights u...

KENNEDY SPACE CENTER, FLA. -- A Boeing Delta II (7326) rocket lights up the clouds of exhaust below as it propels Deep Space 1 into the sky after liftoff from Launch Complex 17A, Cape Canaveral Air Station. The... More

KENNEDY SPACE CENTER, FLA. -- Lighting up the launch pad below, a Boeing Delta II (7326) rocket is silhouetted in the morning light as it propels Deep Space 1 into the sky after liftoff from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1383

KENNEDY SPACE CENTER, FLA. -- Lighting up the launch pad below, a Boei...

KENNEDY SPACE CENTER, FLA. -- Lighting up the launch pad below, a Boeing Delta II (7326) rocket is silhouetted in the morning light as it propels Deep Space 1 into the sky after liftoff from Launch Complex 17A,... More

In a view from Press Site 1 at Cape Canaveral Air Station, a Boeing Delta II (7326) rocket is framed between the ghostly silhouettes of two press photographers as it launches Deep Space 1 on its mission from Launch Complex 17A. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pa001

In a view from Press Site 1 at Cape Canaveral Air Station, a Boeing De...

In a view from Press Site 1 at Cape Canaveral Air Station, a Boeing Delta II (7326) rocket is framed between the ghostly silhouettes of two press photographers as it launches Deep Space 1 on its mission from La... More

KENNEDY SPACE CENTER, FLA. -- A Boeing Delta II (7326) rocket hurls Deep Space 1 through the morning clouds after liftoff, creating sun-challenging light with its exhaust, from Launch Complex 17A, Cape Canaveral Air Station. The first flight in NASA's New Millennium Program, the spacecraft is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1381

KENNEDY SPACE CENTER, FLA. -- A Boeing Delta II (7326) rocket hurls De...

KENNEDY SPACE CENTER, FLA. -- A Boeing Delta II (7326) rocket hurls Deep Space 1 through the morning clouds after liftoff, creating sun-challenging light with its exhaust, from Launch Complex 17A, Cape Canavera... More

KENNEDY SPACE CENTER, FLA. -- Photographed at Launch Complex 17, Cape Canaveral Station, just after midnight on launch day, Boeing's Delta II rocket is bathed in light as it awaits its destiny, hurling NASA's Deep Space 1 into space. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the ion propulsion engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1386

KENNEDY SPACE CENTER, FLA. -- Photographed at Launch Complex 17, Cape ...

KENNEDY SPACE CENTER, FLA. -- Photographed at Launch Complex 17, Cape Canaveral Station, just after midnight on launch day, Boeing's Delta II rocket is bathed in light as it awaits its destiny, hurling NASA's D... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers accompany space shuttle Endeavour as it is being transported from Orbiter Processing Facility-2 to the Vehicle Assembly Building (VAB). In the VAB, Endeavour will be lifted into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final mission, STS-134.          Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller KSC-2011-1901

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, wor...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers accompany space shuttle Endeavour as it is being transported from Orbiter Processing Facility-2 to the Vehicle Assembly Building (VAB).... More

CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is secured to a transporter for its move, or "rollover" from Orbiter Processing Facility-2 to the Vehicle Assembly Building (VAB). In the VAB, Endeavour will be lifted into a high bay where it will be attached to its external fuel tank and solid rocket boosters for its final mission, STS-134.      Endeavour and its STS-134 crew will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer, a high-pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields to the International Space Station. Launch is targeted for April 19 at 7:48 p.m. EDT. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller KSC-2011-1900

CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, spa...

CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, space shuttle Endeavour is secured to a transporter for its move, or "rollover" from Orbiter Processing Facility-2 to the Vehicle Assembly Buil... More

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour waits on Launch Pad 39B for launch on mission STS-97. Behind it are the orange external tank flanked by two solid rocket boosters. On either side of Endeavour’s tail are the tail service masts, which support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. The masts also protect the ground half of those umbilicals from the harsh launch environment. At launch, the masts rotate backward, triggering a compressed-gas thruster and causing a protective hood to move into place and completely seal the structure from the main engine exhaust. At the end of the orbiter access arm, near the nose of Endeavour, is the White Room, an environmental chamber that provides both entrance to the orbiter and emergency egress, if needed. The arm remains extended until 7 minutes, 24 seconds before launch. The arm extends from the Fixed Service Structure. In the center of Endeavour are the payload bay doors. Endeavour is scheduled to launch Nov. 30 at 10:06 p.m. EST KSC-00pp1731

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour waits on Launch ...

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour waits on Launch Pad 39B for launch on mission STS-97. Behind it are the orange external tank flanked by two solid rocket boosters. On either side of Endeavo... More

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour waits on Launch Pad 39B for launch on mission STS-97. Behind it are the orange external tank flanked by two solid rocket boosters. On either side of Endeavour’s tail are the tail service masts, which support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. The masts also protect the ground half of those umbilicals from the harsh launch environment. At launch, the masts rotate backward, triggering a compressed-gas thruster and causing a protective hood to move into place and completely seal the structure from the main engine exhaust. At the end of the orbiter access arm, near the nose of Endeavour, is the White Room, an environmental chamber that provides both entrance to the orbiter and emergency egress, if needed. The arm remains extended until 7 minutes, 24 seconds before launch. The arm extends from the Fixed Service Structure. In the center of Endeavour are the payload bay doors. Endeavour is scheduled to launch Nov. 30 at 10:06 p.m. EST KSC00pp1731

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour waits on Launch ...

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour waits on Launch Pad 39B for launch on mission STS-97. Behind it are the orange external tank flanked by two solid rocket boosters. On either side of Endeavo... More

KENNEDY SPACE CENTER, Fla. -- Resting atop the Mobile Launcher Platform, Space Shuttle Atlantis is viewed from a high level on the Fixed Service Structure. Seen is one of its solid rocket boosters and the external tank. Next to the wing of the orbiter is one of two tail service masts, which support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. On the horizon is the Atlantic Ocean. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab has five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five KSC01pp0016

KENNEDY SPACE CENTER, Fla. -- Resting atop the Mobile Launcher Platfor...

KENNEDY SPACE CENTER, Fla. -- Resting atop the Mobile Launcher Platform, Space Shuttle Atlantis is viewed from a high level on the Fixed Service Structure. Seen is one of its solid rocket boosters and the exter... More

KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis, with its orange external tank and white solid rocket boosters, sits on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiter’s tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11-day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the mission’s spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Station’s Service Module KSC-01pp1185

KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space...

KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis, with its orange external tank and white solid rocket boosters, sits on Launch Pad 39B after rollout from the Vehicle Asse... More

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery is bathed in light after rollback of the Rotating Service Structure in preparation for launch on mission STS-105. The Shuttle comprises the two solid rocket boosters, external tank and orbiter, all of which are secured on the mobile launcher platform beneath them. Extending toward Discovery from the fixed service structure at left is the orbiter access arm. At the end of the arm is the White Room, an environmental chamber that mates with the orbiter and allows personnel to enter the crew compartment. Below, on either side of the orbiter’s tail are the tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. On mission STS-105, Discovery will be transporting the Expedition Three crew and several payloads and scientific experiments to the ISS, including the Early Ammonia Servicer (EAS) tank. The EAS, which will support the thermal control subsystems until a permanent system is activated, will be attached to the Station during two spacewalks. The three-member Expedition Two crew will be returning to Earth aboard Discovery after a five-month stay on the Station. Launch is scheduled for 5:38 p.m. EDT Aug. 9 KSC01padig261

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery is bathed in lig...

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Discovery is bathed in light after rollback of the Rotating Service Structure in preparation for launch on mission STS-105. The Shuttle comprises the two solid rocket... More

KENNEDY SPACE CENTER, Fla. --   Space Shuttle Endeavour stands ready for launch after rollback of the Rotating Service Structure on Launch Pad 39B.  Seen are the twin solid rocket boosters flanking the orange external tank.  Stretching to the crew hatch on the side is the Orbiter Access Arm with its environmentally controlled White Room at the end.   Below Endeavour is the Mobile Launcher Platform with the two service tail masts on either side of the main engines.  The tail masts support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals.  Each tail mast is 31 feet (9.4 meters) high, 15 feet (4.6 meters) long and 9 feet (3.1 meters) wide.   Endeavour is scheduled to launch on mission STS-108 Nov. 29 at 7:41 p.m.  On this 12th flight to the International Space Station, known as a Utilization Flight, Endeavour will carry a crew of four plus the Expedition 4 crew, who will replace Expedition 3 aboard the ISS.  The payload includes the Multi-Purpose Logistics Module Raffaello, filled with supplies, equipment and experiments KSC01PD1744

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour stands ready f...

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour stands ready for launch after rollback of the Rotating Service Structure on Launch Pad 39B. Seen are the twin solid rocket boosters flanking the orange e... More

KENNEDY SPACE CENTER, Fla. --  After rollback of the Rotating Service Structure on Launch Pad 39B, Space Shuttle Endeavour is bathed in light. Seen is one of the twin solid rocket boosters that flank the orange external tank.  Above the external tank is the Gaseous Oxygen Vent Arm that vents gaseous oxygen vapors away from the Shuttle.  The vent hood assembly at the end is often referred to as the "beanie cap."  Stretching to the crew hatch on the side is the Orbiter Access Arm with its environmentally controlled White Room at the end.  The Shuttle sits on the Mobile Launcher Platform with the two service tail masts on either side of the main engines.  The tail masts support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals.  Each tail mast is 31 feet (9.4 meters) high, 15 feet (4.6 meters) long and 9 feet (3.1 meters) wide.   Endeavour is scheduled to launch on mission STS-108 Nov. 29 at 7:41 p.m.  On this 12th flight to the International Space Station, known as a Utilization Flight, Endeavour will carry a crew of four plus the Expedition 4 crew, who will replace Expedition 3 aboard the ISS.  The payload includes the Multi-Purpose Logistics Module Raffaello, filled with supplies, equipment and experiments KSC01PD1743

KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service ...

KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service Structure on Launch Pad 39B, Space Shuttle Endeavour is bathed in light. Seen is one of the twin solid rocket boosters that flank the orange... More

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour is revealed after rollback of the Rotating Service Structure on Launch Pad 39B.  Seen is one of the twin solid rocket boosters that flank the orange external tank.  Above the external tank is the Gaseous Oxygen Vent Arm that vents gaseous oxygen vapors away from the Shuttle.  The vent hood assembly at the end is often referred to as the "beanie cap."  Stretching to the crew hatch on the side is the Orbiter Access Arm with its environmentally controlled White Room at the end.  The Shuttle sits on the Mobile Launcher Platform with the two service tail masts on either side of the main engines.  The tail masts support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals.  Each tail mast is 31 feet (9.4 meters) high, 15 feet (4.6 meters) long and 9 feet (3.1 meters) wide.   Endeavour is scheduled to launch on mission STS-108 Nov. 29 at 7:41 p.m.  On this 12th flight to the International Space Station, known as a Utilization Flight, Endeavour will carry a crew of four plus the Expedition 4 crew, who will replace Expedition 3 aboard the ISS.  The payload includes the Multi-Purpose Logistics Module Raffaello, filled with supplies, equipment and experiments KSC01PD1742

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour is revealed afte...

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour is revealed after rollback of the Rotating Service Structure on Launch Pad 39B. Seen is one of the twin solid rocket boosters that flank the orange externa... More

KENNEDY SPACE CENTER, Fla. --  The Rotating Service Structure on Launch Pad 39B rolls away from Space Shuttle Endeavour atop the Mobile Launcher Platform.   The Space Shuttle comprises the orbiter and an external tank flanked by twin solid rocket boosters. Above the external tank is the Gaseous Oxygen Vent Arm that vents gaseous oxygen vapors away from the Shuttle.  The vent hood assembly at the end is often referred to as the "beanie cap."   On either side of the orbiter's tail and main engines are two tail masts that support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. .  Each tail mast is 31 feet (9.4 meters) high, 15 feet (4.6 meters) long and 9 feet (3.1 meters) wide.   Endeavour is scheduled to launch on mission STS-108 Dec. 4 at 5:45  p.m. EST.  On this 12th flight to the International Space Station, known as a Utilization Flight, Endeavour will carry a crew of four plus the Expedition 4 crew, who will replace Expedition 3 aboard the ISS.  The payload includes the Multi-Purpose Logistics Module Raffaello, filled with supplies, equipment and experiments KSC01PD1761

KENNEDY SPACE CENTER, Fla. -- The Rotating Service Structure on Launc...

KENNEDY SPACE CENTER, Fla. -- The Rotating Service Structure on Launch Pad 39B rolls away from Space Shuttle Endeavour atop the Mobile Launcher Platform. The Space Shuttle comprises the orbiter and an extern... More

KENNEDY SPACE CENTER, Fla. --   Rain on the ground around Space Shuttle Endeavour on Launch Pad 39B reflects the many lights illluminating the Rotating Service Structure (at left), Fixed Service Structure and Shuttle. Twin solid rocket boosters flank the orange external tank behind Endeavour.  Above the external tank is the Gaseous Oxygen Vent Arm that vents gaseous oxygen vapors away from the Shuttle.  The vent hood assembly at the end is often referred to as the "beanie cap."  Stretching from the FSS to the crew hatch on the side of Endeavour is the Orbiter Access Arm with its environmentally controlled White Room at the end, through which the crew enters the vehicle.  The Shuttle sits on the Mobile Launcher Platform with the two service tail masts on either side of the main engines.  The tail masts support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals.  Each tail mast is 31 feet (9.4 meters) high, 15 feet (4.6 meters) long and 9 feet (3.1 meters) wide.  Endeavour is scheduled to launch on mission STS-108 Dec. 4 at 5:45  p.m. EST.  On this 12th flight to the International Space Station, known as a Utilization Flight, Endeavour will carry a crew of four plus the Expedition 4 crew, who will replace Expedition 3 aboard the ISS.  The payload includes the Multi-Purpose Logistics Module Raffaello, filled with supplies, equipment and experiments KSC01PD1762

KENNEDY SPACE CENTER, Fla. -- Rain on the ground around Space Shuttl...

KENNEDY SPACE CENTER, Fla. -- Rain on the ground around Space Shuttle Endeavour on Launch Pad 39B reflects the many lights illluminating the Rotating Service Structure (at left), Fixed Service Structure and S... More

KENNEDY SPACE CENTER, FLA. --   Space Shuttle Endeavour rests on Launch Pad 39A after rollout from the Vehicle Assembly Building.  The Shuttle comprises the orbiter, in front, and the taller orange external tank behind it flanked by twin solid rocket boosters.  The Shuttle sits on the Mobile Launcher Platform that straddles the flame trench below.  On either side of Endeavour's tail and main engines are the tail service masts that support the fluid,, gas and electrical requirements of the orbiter's liquid oxyen and liquid hydrogen aft T-0 umbilicals. At left is the open Rotating Service Structure and the Fixed Service Structure to its right, with its 80-foot lightning mast on top. Mission STS-111 is designated UF-2, the 14th assembly flight to the International Space Station.  Endeavour's payload includes the Multi-Purpose Logistics Module Leonardo and Mobile Base System.  The mission also will swap resident crews on the Station, carrying the Expedition 5 crew and returning to Earth Expedition 4.  Liftoff of Endeavour is scheduled between 4 and 8 p.m. May 30, 2002 KSC-02pd0590

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour rests on Launc...

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour rests on Launch Pad 39A after rollout from the Vehicle Assembly Building. The Shuttle comprises the orbiter, in front, and the taller orange external tan... More

KENNEDY SPACE CENTER, FLA. - Space Shuttle Endeavour rests on Launch Pad 39A after rollout from the Vehicle Assembly Building.  The Shuttle comprises the orbiter, in front, and the taller orange external tank behind it flanked by twin solid rocket boosters.  The Shuttle sits on the Mobile Launcher Platform that straddles the flame trench below.  On either side of Endeavour's tail and main engines are the tail service masts that support the fluid,, gas and electrical requirements of the orbiter's liquid oxyen and liquid hydrogen aft T-0 umbilicals.  In the foreground, left, is the White Room, located at the end of the orbiter access arm.  This environmentally controlled area provides access to the cockpit of the orbiter. Mission STS-111 is designated UF-2, the 14th assembly flight to the International Space Station.  Endeavour's payload includes the Multi-Purpose Logistics Module Leonardo and Mobile Base System.  The mission also will swap resident crews on the Station, carrying the Expedition 5 crew and returning to Earth Expedition 4.  Liftoff of Endeavour is scheduled between 4 and 8 p.m. May 30, 2002 KSC-02pd0589

KENNEDY SPACE CENTER, FLA. - Space Shuttle Endeavour rests on Launch P...

KENNEDY SPACE CENTER, FLA. - Space Shuttle Endeavour rests on Launch Pad 39A after rollout from the Vehicle Assembly Building. The Shuttle comprises the orbiter, in front, and the taller orange external tank b... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 move a solar panel toward the Comet Nucleus Tour (CONTOUR) spacecraft (in the background) for installation. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system.  Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0795

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and E...

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 move a solar panel toward the Comet Nucleus Tour (CONTOUR) spacecraft (in the background) for installation. The spac... More

KENNEDY SPACE CENTER, FLA. - Workers in the Spacecraft Assembly and Encapsulation Facility 2 prepare the Comet Nucleus Tour (CONTOUR) spacecraft for another stage of installing solar panels. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system.  Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0794

KENNEDY SPACE CENTER, FLA. - Workers in the Spacecraft Assembly and En...

KENNEDY SPACE CENTER, FLA. - Workers in the Spacecraft Assembly and Encapsulation Facility 2 prepare the Comet Nucleus Tour (CONTOUR) spacecraft for another stage of installing solar panels. The spacecraft will... More

KENNEDY SPACE CENTER, FLA. --  On Launch Pad 17-A, Cape Canaveral Air Force Station, workers oversee the lifting of the Boeing Delta II rocket into the gantry above. The rocket is the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0792

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air ...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, workers oversee the lifting of the Boeing Delta II rocket into the gantry above. The rocket is the launch vehicle for the CON... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 lift and move a solar panel toward the Comet Nucleus Tour (CONTOUR) spacecraft (in the background) for installation of the panel. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0799

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and E...

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 lift and move a solar panel toward the Comet Nucleus Tour (CONTOUR) spacecraft (in the background) for installation ... More

KENNEDY SPACE CENTER, FLA. - On Cape Canaveral Air Force Station Pad 17-A, the first stage of a Delta II rocket is lifted to vertical.  The rocket is the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0787

KENNEDY SPACE CENTER, FLA. - On Cape Canaveral Air Force Station Pad 1...

KENNEDY SPACE CENTER, FLA. - On Cape Canaveral Air Force Station Pad 17-A, the first stage of a Delta II rocket is lifted to vertical. The rocket is the launch vehicle for the CONTOUR spacecraft, scheduled to ... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 complete the installation of a solar panel onto the Comet Nucleus Tour (CONTOUR) spacecraft. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0801

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and E...

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 complete the installation of a solar panel onto the Comet Nucleus Tour (CONTOUR) spacecraft. The spacecraft will pro... More

KENNEDY SPACE CENTER, FLA.  - On Cape Canaveral Air Force Station Pad 17-A, workers check the lower portion of the Boeing Delta II rocket as it is lifted off the transporter. The rocket is the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0788

KENNEDY SPACE CENTER, FLA. - On Cape Canaveral Air Force Station Pad ...

KENNEDY SPACE CENTER, FLA. - On Cape Canaveral Air Force Station Pad 17-A, workers check the lower portion of the Boeing Delta II rocket as it is lifted off the transporter. The rocket is the launch vehicle fo... More

KENNEDY SPACE CENTER, FLA. - This closeup of the Boeing Delta II rocket on Launch Pad 17-A, Cape Canaveral Air Force Station, shows the CONTOUR project logo and the NASA emblem below it. The rocket is the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0791

KENNEDY SPACE CENTER, FLA. - This closeup of the Boeing Delta II rocke...

KENNEDY SPACE CENTER, FLA. - This closeup of the Boeing Delta II rocket on Launch Pad 17-A, Cape Canaveral Air Force Station, shows the CONTOUR project logo and the NASA emblem below it. The rocket is the launc... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 prepare a solar panel and the Comet Nucleus Tour (CONTOUR) spacecraft (in the background) for installation of the panel. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system.  Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0796

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and E...

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 prepare a solar panel and the Comet Nucleus Tour (CONTOUR) spacecraft (in the background) for installation of the pa... More

KENNEDY SPACE CENTER, FLA. -- On Cape Canaveral Air Force Station Pad 17-A, the Boeing Delta II rocket is lifted up the gantry. The rocket is the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0789

KENNEDY SPACE CENTER, FLA. -- On Cape Canaveral Air Force Station Pad ...

KENNEDY SPACE CENTER, FLA. -- On Cape Canaveral Air Force Station Pad 17-A, the Boeing Delta II rocket is lifted up the gantry. The rocket is the launch vehicle for the CONTOUR spacecraft, scheduled to launch J... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 move a solar panel toward the Comet Nucleus Tour (CONTOUR) spacecraft (in the background) for installation of the panel. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system.  Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0797

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and E...

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 move a solar panel toward the Comet Nucleus Tour (CONTOUR) spacecraft (in the background) for installation of the pa... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2,  the installation of the solar panels onto the Comet Nucleus Tour (CONTOUR) spacecraft has been completed. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0802

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2, the installation of the solar panels onto the Comet Nucleus Tour (CONTOUR) spacecraft has been completed. The spacecraft w... More

KENNEDY SPACE CENTER, FLA. --  The Boeing Delta II rocket nears a vertical position as it is lifted from the gantry. The rocket is the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0790

KENNEDY SPACE CENTER, FLA. -- The Boeing Delta II rocket nears a vert...

KENNEDY SPACE CENTER, FLA. -- The Boeing Delta II rocket nears a vertical position as it is lifted from the gantry. The rocket is the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONT... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket is lifted up the gantry. The rocket is the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0793

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air F...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, the Boeing Delta II rocket is lifted up the gantry. The rocket is the launch vehicle for the CONTOUR spacecraft, scheduled to ... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 install a solar panel on the Comet Nucleus Tour (CONTOUR) spacecraft.  CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system.  Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0798

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and E...

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 install a solar panel on the Comet Nucleus Tour (CONTOUR) spacecraft. CONTOUR will provide the first detailed look ... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 lift a solar panel onto the Comet Nucleus Tour (CONTOUR) spacecraft for installation of the panel. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0800

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and E...

KENNEDY SPACE CENTER, FLA. -- Workers in the Spacecraft Assembly and Encapsulation Facility 2 lift a solar panel onto the Comet Nucleus Tour (CONTOUR) spacecraft for installation of the panel. The spacecraft wi... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2,  a technician conducts a lighting test on the solar panels on the Comet Nucleus Tour (CONTOUR) spacecraft. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0806

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2, a technician conducts a lighting test on the solar panels on the Comet Nucleus Tour (CONTOUR) spacecraft. The spacecraft w... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, a view of the first stage of a Boeing Delta II rocket is captured between two of the solid rocket boosters that will be mated to it. The rocket will be the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0811

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air F...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, a view of the first stage of a Boeing Delta II rocket is captured between two of the solid rocket boosters that will be mated ... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2,  technicians conduct a lighting test on the solar panels on the Comet Nucleus Tour (CONTOUR) spacecraft. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0805

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2, technicians conduct a lighting test on the solar panels on the Comet Nucleus Tour (CONTOUR) spacecraft. The spacecraft wil... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2,  a lighting test is being conducted on the solar panels on the Comet Nucleus Tour (CONTOUR) spacecraft. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0804

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2, a lighting test is being conducted on the solar panels on the Comet Nucleus Tour (CONTOUR) spacecraft. The spacecraft will... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, four solid rocket boosters are lifted for mating to a Boeing Delta II rocket. The rocket will be the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0809

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air F...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, four solid rocket boosters are lifted for mating to a Boeing Delta II rocket. The rocket will be the launch vehicle for the CO... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, a technician works beneath the Boeing Delta II rocket that will be the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0812

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air F...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, a technician works beneath the Boeing Delta II rocket that will be the launch vehicle for the CONTOUR spacecraft, scheduled to... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, the solid rocket boosters have been installed on the first stage of a Boeing Delta II rocket.  The rocket will be the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0813

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air F...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, the solid rocket boosters have been installed on the first stage of a Boeing Delta II rocket. The rocket will be the launch v... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, four solid rocket boosters are lifted for mating to a Boeing Delta II rocket. The rocket will be the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0810

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air F...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, four solid rocket boosters are lifted for mating to a Boeing Delta II rocket. The rocket will be the launch vehicle for the CO... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2,  a lighting test is being conducted on the solar panels on the Comet Nucleus Tour (CONTOUR) spacecraft. The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly as close as 60 miles (100 kilometers) to at least two comets and will take the sharpest pictures yet of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0803

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2, a lighting test is being conducted on the solar panels on the Comet Nucleus Tour (CONTOUR) spacecraft. The spacecraft will... More

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, two solid rocket boosters are lifted for mating to a Boeing Delta II rocket, as another waits its turn on the transporter below. The rocket will be the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0807

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air F...

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A, Cape Canaveral Air Force Station, two solid rocket boosters are lifted for mating to a Boeing Delta II rocket, as another waits its turn on the transporter belo... More

KENNEDY SPACE CENTER, FLA. -- Viewed from the top of Launch Pad 17-A, Cape Canaveral Air Force Station, two solid rocket boosters are lifted for mating to a Boeing Delta II rocket, as another waits its turn on the transporter below. The rocket will be the launch vehicle for the CONTOUR spacecraft, scheduled to launch July 1. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. The spacecraft will fly close to at least two comets, Encke and Schwassmann-Wachmann 3, taking pictures of the nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. KSC-02pd0808

KENNEDY SPACE CENTER, FLA. -- Viewed from the top of Launch Pad 17-A, ...

KENNEDY SPACE CENTER, FLA. -- Viewed from the top of Launch Pad 17-A, Cape Canaveral Air Force Station, two solid rocket boosters are lifted for mating to a Boeing Delta II rocket, as another waits its turn on ... More

KENNEDY SPACE CENTER, FLA. -- The Comet Nucleus Tour (CONTOUR) spacecraft settles on the spin table in the Spacecraft Assembly and Encapsulation Facility 2 for its spin test. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system.  Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0826

KENNEDY SPACE CENTER, FLA. -- The Comet Nucleus Tour (CONTOUR) spacecr...

KENNEDY SPACE CENTER, FLA. -- The Comet Nucleus Tour (CONTOUR) spacecraft settles on the spin table in the Spacecraft Assembly and Encapsulation Facility 2 for its spin test. CONTOUR will provide the first deta... More

KENNEDY SPACE CENTER, FLA. --  A thermal technician with Johns Hopkins University Applied Physics Laboratory closes out the blanket around CONTOUR'S Earth-Sun Sensor.  The spacecraft will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system.  Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1 from Launch Pad 17-A, Cape Canaveral Air Force Station KSC-02pd0822

KENNEDY SPACE CENTER, FLA. -- A thermal technician with Johns Hopkins...

KENNEDY SPACE CENTER, FLA. -- A thermal technician with Johns Hopkins University Applied Physics Laboratory closes out the blanket around CONTOUR'S Earth-Sun Sensor. The spacecraft will provide the first deta... More

Previous

of 11

Next