Planet Earth

cap, nasa

713 media by topicpage 1 of 8
KENNEDY SPACE CENTER, FLA. -    Huge clouds roll over Launch Pad 39B where Space Shuttle Atlantis still sits after the scrub of its launch on mission STS-115.  Atlantis was originally scheduled to launch at 12:29 p.m. EDT on this date, but  a 24-hour scrub was called by mission managers due to a concern with fuel cell 1.  Towering above the shuttle is the 80-foot lightning mast.  At left is the rolled-back rotating service structure with the payload changeout room open.  Just above the orange external tank is the  vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle.  During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC.   Photo credit: NASA/Ken Thornsley KSC-06pd2055

KENNEDY SPACE CENTER, FLA. - Huge clouds roll over Launch Pad 39B w...

KENNEDY SPACE CENTER, FLA. - Huge clouds roll over Launch Pad 39B where Space Shuttle Atlantis still sits after the scrub of its launch on mission STS-115. Atlantis was originally scheduled to launch at 12:... More

Inside the Vehicle Assembly Building, an overhead crane lifts the forward section of a solid rocket booster (SRB) to mate it with the components seen at lower left in the photo. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station KSC-00pp0853

Inside the Vehicle Assembly Building, an overhead crane lifts the forw...

Inside the Vehicle Assembly Building, an overhead crane lifts the forward section of a solid rocket booster (SRB) to mate it with the components seen at lower left in the photo. The forward section of each boos... More

KENNEDY SPACE CENTER, Fla. --  In the early morning hours, the Rotating Service Structure (left) begins rolling back to free Space Shuttle Discovery for launch of mission STS-92 at 8:05 p.m. Oct. 9. Above the external tank can be seen the Gaseous Oxygen Vent Arm with its vent hood, commonly referred to as the “beanie cap.” The system is designed to vent gaseous oxygen vapors away from the Shuttle after cryogenic loading. The scheduled launch is the second attempt after an earlier scrub. STS-92 is making the fifth flight for construction of the International Space Station. The mission is also the 100th in the history of the Shuttle program KSC-00pp1508

KENNEDY SPACE CENTER, Fla. -- In the early morning hours, the Rotatin...

KENNEDY SPACE CENTER, Fla. -- In the early morning hours, the Rotating Service Structure (left) begins rolling back to free Space Shuttle Discovery for launch of mission STS-92 at 8:05 p.m. Oct. 9. Above the e... More

KENNEDY SPACE CENTER, FLA. -    The morning sky lightens behind Space Shuttle Atlantis while lights on the fixed service structure (FSS) still illuminate the orbiter on Launch Pad 39B. Atlantis was originally scheduled to launch at 12:29 p.m. EDT on this date, but  a 24-hour scrub was called by mission managers due to a concern with Fuel Cell 1.  Seen poised above the orange external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Extending from the FSS to Atlantis is the orbiter access arm with the White Room at the end.  The White Room provides entry into the orbiter through the hatch.  During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC.   Photo credit: NASA/Troy Cryder KSC-06pd2050

KENNEDY SPACE CENTER, FLA. - The morning sky lightens behind Space ...

KENNEDY SPACE CENTER, FLA. - The morning sky lightens behind Space Shuttle Atlantis while lights on the fixed service structure (FSS) still illuminate the orbiter on Launch Pad 39B. Atlantis was originally s... More

KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service Structure on Launch Pad 39B, Space Shuttle Endeavour is bathed in light.  Twin solid rocket boosters flank the orange external tank behind Endeavour.  Above the external tank is the Gaseous Oxygen Vent Arm that vents gaseous oxygen vapors away from the Shuttle.  The vent hood assembly at the end is often referred to as the "beanie cap."  Stretching to the crew hatch on the side of Endeavour is the Orbiter Access Arm with its environmentally controlled White Room at the end, through which the crew enters the vehicle.  The Shuttle sits on the Mobile Launcher Platform with the two service tail masts on either side of the main engines.  The tail masts support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals.  Each tail mast is 31 feet (9.4 meters) high, 15 feet (4.6 meters) long and 9 feet (3.1 meters) wide.   Endeavour is scheduled to launch on mission STS-108 Dec. 4 at 5:45  p.m. EST.  On this 12th flight to the International Space Station, known as a Utilization Flight, Endeavour will carry a crew of four plus the Expedition 4 crew, who will replace Expedition 3 aboard the ISS.  The payload includes the Multi-Purpose Logistics Module Raffaello, filled with supplies, equipment and experiments KSC01PD1763

KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service S...

KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service Structure on Launch Pad 39B, Space Shuttle Endeavour is bathed in light. Twin solid rocket boosters flank the orange external tank behind En... More

KENNEDY SPACE CENTER, Fla. -- With the Rotating Service Structure rolled back, Space Shuttle Discovery is revealed, poised for launch on mission STS-102 at 6:42 a.m. EST March 8. It sits on the Mobile Launcher Platform, which straddles the flame trench below that helps deflect the intense heat of launch. Made of concrete and refractory brick, the trench is 490 feet long, 58 feet wide and 40 feet high. Situated above the external tank is the Gaseous Oxygen Vent Arm with the “beanie cap,” a vent hood. On this eighth construction flight to the International Space Station, Discovery carries the Multi-Purpose Logistics Module Leonardo, the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny KSC01padig145

KENNEDY SPACE CENTER, Fla. -- With the Rotating Service Structure roll...

KENNEDY SPACE CENTER, Fla. -- With the Rotating Service Structure rolled back, Space Shuttle Discovery is revealed, poised for launch on mission STS-102 at 6:42 a.m. EST March 8. It sits on the Mobile Launcher ... More

KENNEDY SPACE CENTER, FLA. -- Flags wave near Launch Pad 39A where space shuttle Endeavour waits for liftoff.  The rotating service structure was rolled back starting at 8:23 a.m. and complete at 8:55 a.m.  Above the orange external tank is seen the "beanie cap" at the end of the gaseous oxygen vent arm, extending from the fixed service structure. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle.  Below is the orbiter access arm with the White Room at the end, flush against the shuttle.  The crew gains access into the orbiter through the White Room.  The rotating structure provides protected access to the orbiter for changeout and servicing of payloads at the pad. The structure is supported by a rotating bridge that pivots about a vertical axis on the west side of the pad's flame trench. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations.  The pad is cleared to the perimeter gate for operations to fill the external tank with about 500,000 gallons of cryogenic propellants used by the shuttle’s main engines. This is done at the pad approximately eight hours before the scheduled launch.  Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre.  Launch is scheduled for 2:28 a.m. EDT March 11.  Photo credit: NASA/Kim Shiflett KSC-08pd0673

KENNEDY SPACE CENTER, FLA. -- Flags wave near Launch Pad 39A where spa...

KENNEDY SPACE CENTER, FLA. -- Flags wave near Launch Pad 39A where space shuttle Endeavour waits for liftoff. The rotating service structure was rolled back starting at 8:23 a.m. and complete at 8:55 a.m. Abo... More

KENNEDY SPACE CENTER, Fla. --  In the glow of a setting sun, Space Shuttle Endeavour is revealed after the rollback of the Rotating Service Structure (left) on Launch Pad 39A. At the top of the external tank can be seen the “beanie cap,” a venting apparatus at the end of the Gaseous Oxygen Vent Arm. Endeavour is expected to lift off on mission STS-100 on April 19, carrying the Multi-Purpose Logistics Module Raffaello and the Canadian robotic arm, SSRMS, with a crew of seven to the International Space Station KSC-01pp0909

KENNEDY SPACE CENTER, Fla. -- In the glow of a setting sun, Space Shu...

KENNEDY SPACE CENTER, Fla. -- In the glow of a setting sun, Space Shuttle Endeavour is revealed after the rollback of the Rotating Service Structure (left) on Launch Pad 39A. At the top of the external tank ca... More

Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station KSC-00pp0858

Inside the Vehicle Assembly Building, the forward section of a solid r...

Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt con... More

CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, preparations are under way to install the chin panel on space shuttle Atlantis.    The chin panel is a semicircular-shaped section of reinforced carbon-carbon that fits under the shuttle's nose cap and is part of its thermal protection system.  Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight.  Launch is targeted for May 14, 2010.    Photo credit: NASA/Troy Cryder KSC-2010-1243

CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kenn...

CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, preparations are under way to install the chin panel on space shuttle Atlantis. The chin panel is a semicirc... More

CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the orbiter access arm and White Room are extended toward space shuttle Discovery after rollback of the rotating service structure.  Above the external tank is the oxygen vent hood, called the "beanie cap."  The rollback is in preparation for Discovery's liftoff on the STS-119 mission with a crew of seven. The rotating structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The mission is the 28th to the International Space Station and the 125th space shuttle flight.  Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment.  Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.  Liftoff of Discovery is scheduled for 9:20 p.m. EDT on March 11.   Photo credit: NASA/Kim Shiflett KSC-2009-2020

CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Cente...

CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the orbiter access arm and White Room are extended toward space shuttle Discovery after rollback of the rotating service struc... More

KENNEDY SPACE CENTER, FLA. -  Flaming rockets propel Space Shuttle Atlantis off Launch Pad 39B  for a rendezvous with the International Space Station on mission STS-115. In the background is the Atlantic Ocean.  Appearing above the nose of the orbiter is the end of the gaseous vent line that leads from the hood, or beanie cap, which has been moved away from the shuttle for liftoff. Liftoff was on-time at 11:14:55 a.m. EDT. After several launch attempts were scrubbed due to weather and technical concerns, this launch was executed perfectly. Mission STS-115 is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station.  During the mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. STS-115 is scheduled to last 11 days with a planned landing at KSC KSC-06pp2147

KENNEDY SPACE CENTER, FLA. - Flaming rockets propel Space Shuttle Atl...

KENNEDY SPACE CENTER, FLA. - Flaming rockets propel Space Shuttle Atlantis off Launch Pad 39B for a rendezvous with the International Space Station on mission STS-115. In the background is the Atlantic Ocean.... More

KENNEDY SPACE CENTER, FLA. -- The late afternoon sun highlights the external tank and solid rocket booster on Space Shuttle Columbia after rollback of the Rotating Service Structure on Launch Pad 39A. Visible are the orbiter access arm with the White Room extended to Columbia's cockpit, and at the top, the gaseous oxygen vent arm and cap, called the "beanie cap." Columbia is scheduled for launch Jan. 16 at 10:39 a.m. EST on mission STS-107, a research mission. KSC-03pd0077

KENNEDY SPACE CENTER, FLA. -- The late afternoon sun highlights the ex...

KENNEDY SPACE CENTER, FLA. -- The late afternoon sun highlights the external tank and solid rocket booster on Space Shuttle Columbia after rollback of the Rotating Service Structure on Launch Pad 39A. Visible a... More

CAPE CANAVERAL, Fla. – Lights bathe space shuttle Discovery on Launch Pad 39A at NASA's Kennedy Space Center in Florida after rollback of the rotating service structure. The orbiter access arm and White Room are extended toward Discovery. The White Room provides crew access into the shuttle. Above the external tank is the oxygen vent hood, called the "beanie cap."  The rollback is in preparation for Discovery's liftoff on the STS-119 mission with a crew of seven. The rotating structure provides protected access to the shuttle for changeout and servicing of payloads at the pad. After the RSS is rolled back, the orbiter is ready for fuel cell activation and external tank cryogenic propellant loading operations. The mission is the 28th to the International Space Station and the 125th space shuttle flight.  Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment.  Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science.  Liftoff of Discovery is scheduled for 9:20 p.m. EDT on March 11.   Photo credit: NASA/Kim Shiflett KSC-2009-2024

CAPE CANAVERAL, Fla. – Lights bathe space shuttle Discovery on Launch ...

CAPE CANAVERAL, Fla. – Lights bathe space shuttle Discovery on Launch Pad 39A at NASA's Kennedy Space Center in Florida after rollback of the rotating service structure. The orbiter access arm and White Room ar... More

KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Atlantis stands ready for launch on mission STS-110.  The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-110 crew will enter Atlantis. Above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm.  Vapors are created as the liquid oxygen in the external tank boil off.   The hood vents the gaseous oxygen vapors away from the Space Shuttle vehicle.  The RSS provides protected access to the orbiter for changeout and servicing of payloads at the pad.  The structure has access platforms at five levels to provide access to the payload bay.  The FSS provides access to the orbiter and the RSS.  Mission STS-110 is scheduled to launch April 4 on its 11-day mission to the International Space Station KSC-02pd0392

KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure roll...

KENNEDY SPACE CENTER, FLA. -- With the Rotating Service Structure rolled back, Space Shuttle Atlantis stands ready for launch on mission STS-110. The Orbiter Access Arm extends from the Fixed Service Structure... More

South Polar Cap of Mars as seen by Mariners 9 & 7

South Polar Cap of Mars as seen by Mariners 9 & 7

(August 1969) This mosaic of Mariner 9 frames (top), taken during the first orbit, shows the remnants of the south polar cap of Mars dimly through the great dust storm. Mariner 7 photographed the same area in A... More

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell.  In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1091

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, j... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft.  The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1061

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. ... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians prepare to install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1104

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians prepare to install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, an overhead crane moves the heat shield toward a platform at left.  The heat shield was removed from the Phoenix Mars Lander spacecraft at right. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1087

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane moves the heat shield toward a platform at left. The heat shield was removed from the Phoenix Mars Lander spacecraf... More

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers help guide the heat shield onto a platform.  The heat shield was removed from the Phoenix Mars Lander spacecraft.. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1089

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers help guide the heat shield onto a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft.. The Phoenix ... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander is moved into position for installation on the spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1103

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander is moved into position for installation on the spacecraft. The Phoenix mission is the firs... More

KENNEDY SPACE CENTER, FLA. --  This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell.  The spacecraft will undergo spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1097

KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lan...

KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft will undergo spin testing on the spin table to which it is attached in the Payl... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft.  The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1062

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. ... More

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1095

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing. The Phoenix mission is the fi... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians complete the installation of the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1106

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians complete the installation of the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first proje... More

KENNEDY SPACE CENTER, FLA. -- Secured on the spin table, the backshell with the Phoenix Mars Lander inside is ready for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1096

KENNEDY SPACE CENTER, FLA. -- Secured on the spin table, the backshell...

KENNEDY SPACE CENTER, FLA. -- Secured on the spin table, the backshell with the Phoenix Mars Lander inside is ready for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians lower a crane over the Phoenix Mars Lander spacecraft.  The crane will be used to remove the heat shield from around the Phoenix.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1084

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians lower a crane over the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the P... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1105

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first op... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians attach a crane to the Phoenix Mars Lander spacecraft.  The crane will be used to remove the heat shield from around the Phoenix.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1085

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians attach a crane to the Phoenix Mars Lander spacecraft. The crane will be used to remove the heat shield from around the Ph... More

KENNEDY SPACE CENTER, FLA. --  On Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is maneuvered away from the U.S. Air Force C-17 Globemaster III that delivered it. The crate will be transported to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1058

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landi...

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is maneuvered away from the U.S. Air Force C-17 Globemaster III that delivered it. The crate will... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, workers watch as an overhead crane lowers the heat shield toward a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1088

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers watch as an overhead crane lowers the heat shield toward a platform. The heat shield was removed from the Phoenix Mars Lander ... More

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1094

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell w...

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is th... More

KENNEDY SPACE CENTER, FLA. --  After its arrival at Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is secure on a flat bed truck for transportation to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1060

KENNEDY SPACE CENTER, FLA. -- After its arrival at Kennedy Space Cent...

KENNEDY SPACE CENTER, FLA. -- After its arrival at Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is secure on a flat bed truck for transportation to the Payload Hazardous Servi... More

KENNEDY SPACE CENTER, FLA. -  In preparation for the July 1 launch of Space Shuttle Discovery on mission STS-121, the Launch Pad 39B rotating service structure (RSS) enclosing the shuttle rolls away.  Above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. The RSS provides protected access to the orbiter for changeout and servicing of payloads at the pad. The structure is supported by a rotating bridge that pivots about a vertical axis on the west side of the pad's flame trench. The hinge column rests on the pad surface and is braced to the fixed service structure. Support for the outer end of the bridge is provided by two eight-wheel, motor-driven trucks that move along circular twin rails installed flush with the pad surface. The track crosses the flame trench on a permanent bridge.  The RSS is 102 feet long, 50 feet wide and 130 feet high. The structure has orbiter access platforms at five levels to provide access to the payload bay while the orbiter is being serviced in the RSS. Each platform has independent extendable planks that can be arranged to conform to a payload's configuration.  This mission is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. Photo credit: NASA/Kim Shiflett KSC-06pd1302

KENNEDY SPACE CENTER, FLA. - In preparation for the July 1 launch of ...

KENNEDY SPACE CENTER, FLA. - In preparation for the July 1 launch of Space Shuttle Discovery on mission STS-121, the Launch Pad 39B rotating service structure (RSS) enclosing the shuttle rolls away. Above the... More

KENNEDY SPACE CENTER, FLA. -- An overhead crane lifts the backshell with the Phoenix Mars Lander inside off its work stand in the Payload Hazardous Servicing Facility.  The spacecraft is being moved to a spin table (back left) for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1092

KENNEDY SPACE CENTER, FLA. -- An overhead crane lifts the backshell wi...

KENNEDY SPACE CENTER, FLA. -- An overhead crane lifts the backshell with the Phoenix Mars Lander inside off its work stand in the Payload Hazardous Servicing Facility. The spacecraft is being moved to a spin t... More

KENNEDY SPACE CENTER, FLA. --   This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1099

KENNEDY SPACE CENTER, FLA. -- This closeup shows the spin test of th...

KENNEDY SPACE CENTER, FLA. -- This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed ... More

KENNEDY SPACE CENTER, FLA. --  On Kennedy Space Center's Shuttle Landing Facility, the cargo hold of this U.S. Air Force C-17 Globemaster III opens to reveal the crated Phoenix spacecraft inside.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1056

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landi...

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, the cargo hold of this U.S. Air Force C-17 Globemaster III opens to reveal the crated Phoenix spacecraft inside. The Phoenix m... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, media dressed in clean-room garb document the arrival of the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1063

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, media dressed in clean-room garb document the arrival of the Phoenix spacecraft. The spacecraft arrived May 7 ... More

KENNEDY SPACE CENTER, FLA. --  The unwrapped Phoenix spacecraft is on display in the Payload Hazardous Servicing Facility.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1067

KENNEDY SPACE CENTER, FLA. -- The unwrapped Phoenix spacecraft is on ...

KENNEDY SPACE CENTER, FLA. -- The unwrapped Phoenix spacecraft is on display in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Ma... More

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell.  In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1090

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, j... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers dressed in clean-room garb remove the protective wrapping from around the Phoenix spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1066

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers dressed in clean-room garb remove the protective wrapping from around the Phoenix spacecraft. The Phoe... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers move the platform with the Phoenix spacecraft into another room. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1064

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers move the platform with the Phoenix spacecraft into another room. The Phoenix mission is the first proj... More

KENNEDY SPACE CENTER, FLA. --  This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell.  The spacecraft is ready for spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1098

KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lan...

KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft is ready for spin testing on the spin table to which it is attached in the Payl... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1108

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed pr... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, an overhead crane lifts the heat shield from the Phoenix Mars Lander spacecraft.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1086

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane lifts the heat shield from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's f... More

KENNEDY SPACE CENTER, FLA. --  This U.S. Air Force C-17 Globemaster III lands at the Kennedy Space Center's Shuttle Landing Facility carrying the Phoenix spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1055

KENNEDY SPACE CENTER, FLA. -- This U.S. Air Force C-17 Globemaster II...

KENNEDY SPACE CENTER, FLA. -- This U.S. Air Force C-17 Globemaster III lands at the Kennedy Space Center's Shuttle Landing Facility carrying the Phoenix spacecraft. The Phoenix mission is the first project in ... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1107

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed pr... More

KENNEDY SPACE CENTER, FLA. --  After its arrival at Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft has been placed on a flat bed truck for transportation to the Payload Hazardous Servicing Facility.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1059

KENNEDY SPACE CENTER, FLA. -- After its arrival at Kennedy Space Cent...

KENNEDY SPACE CENTER, FLA. -- After its arrival at Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft has been placed on a flat bed truck for transportation to the Payload Hazardous... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers dressed in clean-room garb begin removing the protective wrapping from around the Phoenix spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1065

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, workers dressed in clean-room garb begin removing the protective wrapping from around the Phoenix spacecraft. ... More

KENNEDY SPACE CENTER, FLA. --    Under a blue sky streaked with clouds, Launch Pad 39B holds Space Shuttle Discovery, ready for launch of mission STS-116.  At the far left is the rotating service structure, rolled back after midnight in preparation for launch.  Next to Discovery is the fixed service structure, with the 80-foot-high lightning mast on top, part of the lightning protection system on the pad. Beneath Discovery's wings are the tail masts, which provide several umbilical connections to the orbiter, including a liquid-oxygen line through one and a liquid-hydrogen line through another.  Seen above the golden external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm, extending from the FSS. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Below it, also extending toward Discovery from the FSS, is the orbiter access arm with the White Room at the end. The crew gains access into the orbiter through the White Room.  Discovery is scheduled to launch on mission STS-116 at 9:35 p.m. today.  On the mission, the crew will deliver truss segment, P5, to the International Space Station and begin the intricate process of reconfiguring and redistributing the power generated by two pairs of U.S. solar arrays. The P5 will be mated to the P4 truss that was delivered and attached during the STS-115 mission in September. Photo credit: NASA/Ken Thornsley KSC-06pd2674

KENNEDY SPACE CENTER, FLA. -- Under a blue sky streaked with clouds...

KENNEDY SPACE CENTER, FLA. -- Under a blue sky streaked with clouds, Launch Pad 39B holds Space Shuttle Discovery, ready for launch of mission STS-116. At the far left is the rotating service structure, rol... More

Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) is lowered onto the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station KSC-00pp0857

Inside the Vehicle Assembly Building, the forward section of a solid r...

Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) is lowered onto the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt co... More

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside toward a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1093

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell w...

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers the backshell with the Phoenix Mars Lander inside toward a spin table for spin testing in the Payload Hazardous Servicing Facility. The Phoenix mission is ... More

KENNEDY SPACE CENTER, FLA. --   In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1100

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Fac...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed p... More

KENNEDY SPACE CENTER, FLA. --  On Kennedy Space Center's Shuttle Landing Facility, workers oversee the offloading of the crated Phoenix spacecraft inside the cargo hold of a U.S. Air Force C-17 Globemaster III.  The crate will be transported to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1057

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landi...

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, workers oversee the offloading of the crated Phoenix spacecraft inside the cargo hold of a U.S. Air Force C-17 Globemaster III.... More

South Polar Cap of Mars as seen by Mariners 9 & 7

South Polar Cap of Mars as seen by Mariners 9 & 7

South Polar Cap of Mars as seen by Mariners 9 & 7 NASA/JPL

Skylab. NASA Skylab space station

Skylab. NASA Skylab space station

This photograph is of Astronaut Kerwin wearing the Sleep Monitoring cap (Experiment M133) taken during the Skylab-2 mission. The Sleep Monitoring Experiment was a medical evaluation designed to objectively dete... More

ELECTRICAL SHUNT INSTALLATION - C BAND RECEIVER IN NOSE CAP OF THE OV-1 AIRPLANE

ELECTRICAL SHUNT INSTALLATION - C BAND RECEIVER IN NOSE CAP OF THE OV-...

The original finding aid described this as: Capture Date: 2/6/1976 Photographer: DONALD HUEBLER Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

ELECTRICAL SHUNT INSTALLATION - C BAND RECEIVER IN NOSE CAP OF THE OV-1 AIRPLANE

ELECTRICAL SHUNT INSTALLATION - C BAND RECEIVER IN NOSE CAP OF THE OV-...

The original finding aid described this as: Capture Date: 2/6/1976 Photographer: DONALD HUEBLER Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

ELECTRICAL SHUNT INSTALLATION - C BAND RECEIVER IN NOSE CAP OF THE OV-1 AIRPLANE

ELECTRICAL SHUNT INSTALLATION - C BAND RECEIVER IN NOSE CAP OF THE OV-...

The original finding aid described this as: Capture Date: 2/6/1976 Photographer: DONALD HUEBLER Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

BURNER CAP AND NOZZLE OFF OTHE C-131 AIRPLANE

BURNER CAP AND NOZZLE OFF OTHE C-131 AIRPLANE

The original finding aid described this as: Capture Date: 4/17/1978 Photographer: DONALD HUEBLER Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

BURNER CAP AND NOZZLE OFF OTHE C-131 AIRPLANE

BURNER CAP AND NOZZLE OFF OTHE C-131 AIRPLANE

The original finding aid described this as: Capture Date: 4/17/1978 Photographer: DONALD HUEBLER Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

CAP SEALS AFTER TEST IN THE CARTRIDGE

CAP SEALS AFTER TEST IN THE CARTRIDGE

The original finding aid described this as: Capture Date: 11/19/1979 Photographer: PAUL RIEDEL Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

CAP SEALS AFTER TEST IN THE CARTRIDGE

CAP SEALS AFTER TEST IN THE CARTRIDGE

The original finding aid described this as: Capture Date: 11/19/1979 Photographer: PAUL RIEDEL Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

CAP SEALS AFTER TEST IN THE CARTRIDGE

CAP SEALS AFTER TEST IN THE CARTRIDGE

The original finding aid described this as: Capture Date: 11/19/1979 Photographer: PAUL RIEDEL Keywords: Larsen Scan Photographs Relating to Agency Activities, Facilities and Personnel

S01-06-497 - STS-001 - Commander Young removes CAP from FDF stowage locker on middeck

S01-06-497 - STS-001 - Commander Young removes CAP from FDF stowage lo...

The original finding aid described this as: Description: Commander Young removes Crew Activity Plans (CAP) from Flight Data File (FD/FDF) modular stowage locker single tray assembly located in forward middeck ... More

S124E006930 - STS-124 - PPRV Cap

S124E006930 - STS-124 - PPRV Cap

The original finding aid described this as: Description: Close-up view of a Positive Pressure Relief Valve (PPRV) cap as documented by the STS-124 crew. Subject Terms: STS-124, Valves, Onboard Activities Cat... More

S01-06-496 - STS-001 - Commander Young removes CAP from FDF stowage locker on middeck

S01-06-496 - STS-001 - Commander Young removes CAP from FDF stowage lo...

The original finding aid described this as: Description: Commander Young removes Crew Activity Plans (CAP) from Flight Data File (FD/FDF) modular stowage locker single tray assembly located in forward middeck ... More

S124E006928 - STS-124 - PPRV Cap

S124E006928 - STS-124 - PPRV Cap

The original finding aid described this as: Description: Close-up view of a Positive Pressure Relief Valve (PPRV) cap as documented by the STS-124 crew. Subject Terms: STS-124, Valves, Onboard Activities Cat... More

S124E006929 - STS-124 - PPRV Cap

S124E006929 - STS-124 - PPRV Cap

The original finding aid described this as: Description: Close-up view of a Positive Pressure Relief Valve (PPRV) cap as documented by the STS-124 crew. Subject Terms: STS-124, Valves, Onboard Activities Cat... More

CAPE CANAVERAL, Fla. – The upper part of the space shuttle vehicle showing the "beanie cap" in place.    Photo credit: NASA KSC-81PC-0052

CAPE CANAVERAL, Fla. – The upper part of the space shuttle vehicle sho...

CAPE CANAVERAL, Fla. – The upper part of the space shuttle vehicle showing the "beanie cap" in place. Photo credit: NASA

S05-06-212 - STS-005 - Crew members with Crew Activity Plan (CAP) on middeck

S05-06-212 - STS-005 - Crew members with Crew Activity Plan (CAP) on m...

The original finding aid described this as: Description: Commander Brand (in dark blue shirt) and Pilot Overmyer conduct microgravity experiments with food containers and meal tray assemblies in front of midde... More

S05-06-211 - STS-005 - Crew members with Crew Activity Plan (CAP) on middeck

S05-06-211 - STS-005 - Crew members with Crew Activity Plan (CAP) on m...

The original finding aid described this as: Description: Commander Brand (in dark blue shirt, and Pilot Overmyer conduct microgravity experiments with food containers and meal tray assemblies in front of midde... More

S05-06-210 - STS-005 - Crew members with Crew Activity Plan (CAP) on middeck

S05-06-210 - STS-005 - Crew members with Crew Activity Plan (CAP) on m...

The original finding aid described this as: Description: Commander Brand (in dark blue shirt), Pilot Overmyer and Mission Specialist (MS) Lenoir conduct microgravity experiments with food containers and meal t... More

P-34714 This image of the south polar terrain of Triton reveals about 50 dark plumes or 'wind streaks' on the icy surface. The plumes originate at very dark spots generally a few miles in diameter and some are more than 100 miles long. The spots which clearly mark the source of the dark material may be vents where gas has erupted from beneath the surface and carried dark particles into Triton's nitrogen atmosphere. Southwesterly winds then transported the erupted particles, which formed gradually thinning deposits to the northeast of most vents. It is possible that the eruptions have been driven by seasonal heating of very shallow subsurface deposits of volatiles, and the winds transporting particles similiarly may be seasonal winds. The polar terrain, upon which the dark streaks have been deposited, is a region of bright materials mottled with irregular, somewhat dark patches. The pattern of irregular patches suggests that they may correspond to lag deposits of moderately dark material that cap the bright ice over the polar terrain. ARC-1989-A89-7049

P-34714 This image of the south polar terrain of Triton reveals about ...

P-34714 This image of the south polar terrain of Triton reveals about 50 dark plumes or 'wind streaks' on the icy surface. The plumes originate at very dark spots generally a few miles in diameter and some are ... More

P-34764 Voyager 2 obtained this high resolution color image of Neptune's large satellite Triton  during its close flyby. Approximately a dozen individual images were combined to produce this comprehensive view of  the Neptune-facing hemisphere of Triton. Fine detail is provided by high resolution, clear-filter images, with color information added from lower resolution frames. The large south polar cap at the bottom of the image is highly refective and slightly pink in color , and may consist of a slowly evaporating layer of nitrogen ice deposited during the previous winter. From the ragged edge of the polar cap northward the satellite's face is generously darker and redder in color. This coloring may be produced by the action of ultraviolet light and magnetospheric radiation upon methane in the atmosphere and surface. Running across this darker region , approximately parallel to the edge of the polar cap, is a band of brighter white material that is almost bluish in color. The underlying topography in this bright band is similiar, however to that in the darker, redder regions surrounding it. ARC-1989-AC89-7046

P-34764 Voyager 2 obtained this high resolution color image of Neptune...

P-34764 Voyager 2 obtained this high resolution color image of Neptune's large satellite Triton during its close flyby. Approximately a dozen individual images were combined to produce this comprehensive view ... More

This photomosaic of Triton, assembled from 14 individual frames, shows the great variety of its surface features.  At the bottom of the image are remnants of the south polar cap, containing 'dark'  streaks generally aligned towards the northeast (upper right in the image).  Even though these are darker than other features on Triton, they reflect nearly ten times as much light as the surface of the Earth's moon.  North of the cap, in the western (left) half of the disk is the region which has been informally dubbed the 'cantaloupe' terrain.  Small dimples with upraised rims and shallow central depressions dot the area.  Long fractures have opened allowing some icy material to ooze up and form a central ridge.  These criss-cross the region and extend into parts of the polar cap region.  Towards the south this terrain has a light covering of frost.  Running east to the limb of Triton, just north of the polar cap, is an area of smooth plains and low hills which is the most densely cratered region seen.  In the northeast (upper right) of this image are plains which show evidence for extensive resurfacing, including possible extrusions of flowing material onto the surface.  This region also contains two large smooth areas reminiscent of the maria of the Earth's moon which were formed by large-scale volcanic flooding.  Near the eastern (right) limb of Triton are three darker gray markings with sharply defined brighter borders.  These are unlike anything else seen in the solar system, and their origin is not yet understood. ARC-1989-A89-7061

This photomosaic of Triton, assembled from 14 individual frames, shows...

This photomosaic of Triton, assembled from 14 individual frames, shows the great variety of its surface features. At the bottom of the image are remnants of the south polar cap, containing 'dark' streaks gene... More

Montage of Neptune and Triton. NASA public domain image colelction.

Montage of Neptune and Triton. NASA public domain image colelction.

(January 6, 1990) This computer generated montage shows Neptune as it would appear from a spacecraft approaching Triton, Neptune's largest moon at 2706 km (1683 mi) in diameter. The wind and sublimation eroded ... More

STS-44 Commander Gregory wears a USAF Academy cap on OV-104's middeck

STS-44 Commander Gregory wears a USAF Academy cap on OV-104's middeck

STS044-32-030 (24 Nov-1 Dec 1991) --- STS-44 Commander Frederick D. Gregory wears a cap honoring his alma mater, the United States Air Force (USAF) Academy, on the middeck of Atlantis, Orbiter Vehicle (OV) 104.... More

CPL P. S. Royston, CPL T. M. Dale and LCpl A. Olguin from Combat Camera perform preventative maintenance on an INMARSET that is used to transmit digital imagery via satellite during Operation Uphold Democracy in Cap Haitien, Haiti

CPL P. S. Royston, CPL T. M. Dale and LCpl A. Olguin from Combat Camer...

The original finding aid described this photograph as: Subject Operation/Series: UPHOLD DEMOCRACY Base: Cap Haitien Country: Haiti (HTI) Scene Camera Operator: GYSGT J. R. Tricoche (Usmc) Release Status: R... More

Marine LT J. P. Bertschk and LCPL R. Ibarra of CSSD 29 work on a magnaphone satellite inside the CSSD compound at Cap Haitien during Operation Uphold Democracy

Marine LT J. P. Bertschk and LCPL R. Ibarra of CSSD 29 work on a magna...

The original finding aid described this photograph as: Subject Operation/Series: UPHOLD DEMOCRACY Base: Cap Haitien Country: Haiti (HTI) Scene Camera Operator: LCPL C. S. Fowler (Usmc) Release Status: Rele... More

STS078-373-019 - STS-078 - SACS, Thirsk and Brady each wearing the sleep caps during LMS-1 mission

STS078-373-019 - STS-078 - SACS, Thirsk and Brady each wearing the sle...

The original finding aid described this as: Description: STS-78 Payload Specialist Robert Thirsk wearing the Sleep and Circadian Study (SACS) sleep cap in the Spacelab during Life and Microgravity Sciences (LM... More

Mars North Polar Ice Cap, NASA Viking Images

Mars North Polar Ice Cap, NASA Viking Images

Shown here is an oblique view of the polar region, as seen with NASA Viking 1 spacecraft orbiting Mars over latitude 39 degrees north. http://photojournal.jpl.nasa.gov/catalog/PIA00009 NASA/JPL/USGS

S86E5378 - STS-086 - Solar array cap for Spektr

S86E5378 - STS-086 - Solar array cap for Spektr

The original finding aid described this as: Description: View of the solar array cap to be moved during the extravehicular activity by STS-86 crewmembers Parazynski and Titov. The cap will be deployed on the d... More

STS086-373-002 - STS-086 - Gift exchange in the Mir Base Block

STS086-373-002 - STS-086 - Gift exchange in the Mir Base Block

The original finding aid described this as: Description: STS-86 mission specialist Wendy Lawrence prepares to float by mission specialist Jean-Loup Chretien as they exchange gifts with the Mir 24 crew in the M... More

STS-94 Mission Commander James D. Halsell  Jr. (center) shakes hands with KSC Shuttle Launch Director James F. Harrington (in  white cap) after an end-of-mission landing on Runway 33 of KSC’s Shuttle Landing  Facility July 17 to complete the Microgravity Science Laboratory-1 (MSL-1) mission.  Main gear touchdown occurred at 6:46:34 a.m. EDT, July 17. At right, STS-88 Mission  Commander and Shuttle Training Aircraft (STA) pilot Robert D. Cabana greets STS-94  Mission Specialist Donald A. Thomas. In the background, KSC Center Director Roy D.  Bridges Jr. meets with other members of the STS-94 crew KSC-97PC1055

STS-94 Mission Commander James D. Halsell Jr. (center) shakes hands w...

STS-94 Mission Commander James D. Halsell Jr. (center) shakes hands with KSC Shuttle Launch Director James F. Harrington (in white cap) after an end-of-mission landing on Runway 33 of KSC’s Shuttle Landing F... More

KENNEDY SPACE CENTER, FLA. -- STS-89 crew members and technicians participate in the Crew Equipment Interface Test (CEIT) in front of the back cap of the SPACEHAB module at the SPACEHAB Payload Processing Facility at Port Canaveral in preparation for the mission, slated to be the first Shuttle launch of 1998. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working onorbit. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A KSC-97PC1722

KENNEDY SPACE CENTER, FLA. -- STS-89 crew members and technicians part...

KENNEDY SPACE CENTER, FLA. -- STS-89 crew members and technicians participate in the Crew Equipment Interface Test (CEIT) in front of the back cap of the SPACEHAB module at the SPACEHAB Payload Processing Facil... More

STS-87 Commander Kevin Kregel sits in his launch and entry suit in the Operations and Checkout Building holding a cap of his son’s soccer team of which Kregel is the coach. Shortly, he and the five other crew members of STS-87 will depart for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. A veteran of two space flights (STS-70 and -78), Kregel has logged more than 618 hours in space KSC-97PC1681

STS-87 Commander Kevin Kregel sits in his launch and entry suit in the...

STS-87 Commander Kevin Kregel sits in his launch and entry suit in the Operations and Checkout Building holding a cap of his son’s soccer team of which Kregel is the coach. Shortly, he and the five other crew m... More

STS089-333-029 - STS-089 - MS Sharipov wears an Uzbeck cap on Spacehab

STS089-333-029 - STS-089 - MS Sharipov wears an Uzbeck cap on Spacehab

The original finding aid described this as: Description: STS-89 Salizhan Sharipov wears a traditional Uzbeck cap, while on Spacehab. Subject Terms: STS-89, ENDEAVOUR (ORBITER), SPACEHAB, ASTRONAUTS Categorie... More

Textures in South Polar Ice Cap #1

Textures in South Polar Ice Cap #1

Textures in South Polar Ice Cap #1 NASA/JPL/Malin Space Science Systems

Textures in South Polar Ice Cap #2

Textures in South Polar Ice Cap #2

Textures in South Polar Ice Cap #2 NASA/JPL/Malin Space Science Systems

Seasonal Changes in Mars North Polar Ice Cap

Seasonal Changes in Mars North Polar Ice Cap

Seasonal Changes in Mars North Polar Ice Cap JPL/NASA/STScI

North Polar Cap Margin natural color top and enhanced color bottom

North Polar Cap Margin natural color top and enhanced color bottom

Water ice mixed with dust form the residual north polar ice cap brown color in these images from NASA's Viking Orbiter 2. http://photojournal.jpl.nasa.gov/catalog/PIA00152 NASA/JPL/USGS

South Polar Residual Ice Cap. NASA public domain image colelction.

South Polar Residual Ice Cap. NASA public domain image colelction.

South Polar Residual Ice Cap http://photojournal.jpl.nasa.gov/catalog/PIA00301 NASA/JPL/USGS

Triton Southern Hemisphere, Voyager Program, NASA/JPL Photo

Triton Southern Hemisphere, Voyager Program, NASA/JPL Photo

This polar projection from NASA Voyager 2 of Triton southern hemisphere provides a view of the southern polar cap and bright equatorial fringe. The margin of the cap is scalloped and ranges in latitude from +10... More

KENNEDY SPACE CENTER, FLA. -- Technicians from Boeing and Alenia Aerospazio work to remove the end cap from the first Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS) during testing in the Space Station Processing Facility. The Italian-built module, named Leonardo, is one of three from Alenia Aerospazio, and will be operated by NASA and supported by ASI, the Italian space agency. The MPLMs will be carried in the payload bay of a Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the ISS. Leonardo is scheduled to be launched on STS-100 in December 1999. The second MPLM, named Raffaello, is scheduled to be handed over in April 1999. A third module, to be named Donatello, is due to be delivered in October 2000 for launch in January 2001 KSC-98pc894

KENNEDY SPACE CENTER, FLA. -- Technicians from Boeing and Alenia Aeros...

KENNEDY SPACE CENTER, FLA. -- Technicians from Boeing and Alenia Aerospazio work to remove the end cap from the first Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS) during testi... More

KENNEDY SPACE CENTER, FLA. -- The inside of the first Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS) is seen after the end cap is removed. The Italian-built module, named Leonardo, is undergoing testing at the Space Station Processing Facility. It is one of three from Alenia Aerospazio, and will be operated by NASA and supported by ASI, the Italian space agency. The MPLMs will be carried in the payload bay of a Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the ISS. Leonardo is scheduled to be launched on STS-100 in December 1999. The second MPLM, named Raffaello, is scheduled to be handed over in April 1999. A third module, to be named Donatello, is due to be delivered in October 2000 for launch in January 2001 KSC-98pc897

KENNEDY SPACE CENTER, FLA. -- The inside of the first Multi-Purpose Lo...

KENNEDY SPACE CENTER, FLA. -- The inside of the first Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS) is seen after the end cap is removed. The Italian-built module, named Leonar... More

KENNEDY SPACE CENTER, FLA. -- Technicians and workers watch as the Rack Insertion Device (at left) moves the end cap away from the first Multi-Purpose Logistics Module (MPLM) (at right) for the International Space Station (ISS). The Italian-built module, named Leonardo, is undergoing testing at the Space Station Processing Facility. It is one of three from Alenia Aerospazio, and will be operated by NASA and supported by ASI, the Italian space agency. The MPLMs will be carried in the payload bay of a Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the ISS. Leonardo is scheduled to be launched on STS-100 in December 1999. The second MPLM, named Raffaello, is scheduled to be handed over in April 1999. A third module, to be named Donatello, is due to be delivered in October 2000 for launch in January 2001 KSC-98pc899

KENNEDY SPACE CENTER, FLA. -- Technicians and workers watch as the Rac...

KENNEDY SPACE CENTER, FLA. -- Technicians and workers watch as the Rack Insertion Device (at left) moves the end cap away from the first Multi-Purpose Logistics Module (MPLM) (at right) for the International Sp... More

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, technicians from Boeing and Alenia Aerospazio watch as the end cap is removed from the first Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). The Italian-built module, named Leonardo, is one of three from Alenia Aerospazio, and will be operated by NASA and supported by ASI, the Italian space agency. The MPLMs will be carried in the payload bay of a Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the ISS. Leonardo is scheduled to be launched on STS-100 in December 1999. The second MPLM, named Raffaello, is scheduled to be handed over in April 1999. A third module, to be named Donatello, is due to be delivered in October 2000 for launch in January 2001 KSC-98pc895

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility...

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, technicians from Boeing and Alenia Aerospazio watch as the end cap is removed from the first Multi-Purpose Logistics Module (MPLM) for the... More

KENNEDY SPACE CENTER, FLA. -- Technicians and workers watch as the Rack Insertion Device (at left) removes the end cap from the first Multi-Purpose Logistics Module (MPLM) for the International Space Station (ISS). The Italian-built module, named Leonardo, is undergoing testing at the Space Station Processing Facility. It is one of three from Alenia Aerospazio, and will be operated by NASA and supported by ASI, the Italian space agency. The MPLMs will be carried in the payload bay of a Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the ISS. Leonardo is scheduled to be launched on STS-100 in December 1999. The second MPLM, named Raffaello, is scheduled to be handed over in April 1999. A third module, to be named Donatello, is due to be delivered in October 2000 for launch in January 2001 KSC-98pc898

KENNEDY SPACE CENTER, FLA. -- Technicians and workers watch as the Rac...

KENNEDY SPACE CENTER, FLA. -- Technicians and workers watch as the Rack Insertion Device (at left) removes the end cap from the first Multi-Purpose Logistics Module (MPLM) for the International Space Station (I... More

Previous

of 8

Next